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Abstract

In this paper we consider numerical schemes for multidimensional evolutionary convection–diffusion problems,
where the approximation properties are uniform in the diffusion parameter. In order to obtain an efficient method,
to provide good approximations with independence of the size of the diffusion parameter, we have developed
a numerical method which combines a finite difference spatial discretization on a special mesh and a fractional
step method for the time variable. The special mesh allows a correct approximation of the solution in the
boundary layers, while the fractional steps permits a low computational cost algorithm. Some numerical examples
confirming the expected behavior of the method are shown.  1998 Elsevier Science B.V. and IMACS. All rights
reserved.
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1. Introduction

In this paper we are concerned with the numerical solution of convection–diffusion parabolic prob-
lems, governed by the equation

∂u

∂t
− ε∆u+−→v −→∇u+ ku = f(x, y, t),

where ε is a small parameter 0 < ε 6 1 and −→v = (v1(x, y), v2(x, y)), k = k1(x, y) + k2(x, y) and
f = f(x, y, t) are smooth functions, with vi > v > 0, and ki > 0 for i = 1, 2.

It is known that, generally, the solutions of these problems present a multiscale character even for
smooth data, i.e., such solutions vary rapidly in certain narrow regions called layers (for an account of

∗ Corresponding author. E-mail: clavero@posta.unizar.es.
1 Research partially supported by the CICYT project No. AMB94-0396.
2 Research partially supported by a project of Gobierno de Navarra.
3 Research partially supported by the Russian Foundation for Basic Research.

0168-9274/98/$19.00  1998 Elsevier Science B.V. and IMACS. All rights reserved.
PII: S0168-9274(98)00014-2



212 C. Clavero et al. / Applied Numerical Mathematics 27 (1998) 211–231

asymptotic results about this kind of problems see [14,16,18]). This behavior causes very inaccurate
numerical solutions if standard finite difference or finite element methods are used on uniform meshes,
unless a large number (ε-dependent) of mesh points is considered.

Such drawback appears even for very simple (one-dimensional and stationary) singular perturbation
problems of this kind, and has led to the development of adaptive techniques, capable of producing
good approximations on meshes with a number of grid points independent of ε. In this context, the
uniform convergence is the key property; it means that the rate of convergence and the error constant
of the method are independent of the singular perturbation parameter ε.

Two different routes to construct uniformly convergent schemes have been followed in recent years:
firstly, the use of exponentially fitted schemes, which have coefficients of exponential type adapted to
the singular perturbation problems (see [5,6,17]); secondly, the special mesh approach (see [7,10,16]),
which constructs meshes adapted to the solution of the problem. In these two contexts, several schemes
for one-dimensional stationary problems have been deeply studied. This kind of analysis is, however,
a difficult task in the case of multidimensional stationary or evolutionary problems.

The difficulties of the development of exponential fitting schemes for multidimensional problems,
encouraged us to consider, in some earlier papers, see [1,2], an alternating direction method. In this
way, we took advantage of known techniques for uniform convergence of one-dimensional exponential-
fitting schemes, and also of the computational cost reduction yielded by the use of alternating directions.
Some low-cost uniformly convergent methods were developed for certain multidimensional singularly
perturbed parabolic problems.

Recently, a simple type of special non-uniform meshes (see [19–21]) has permitted the construction
of uniformly convergent methods using standard stable discretizations. In general, it is not easy to
prove the uniform convergence results that the numerical experiments show. In work of Sun and Stynes
(see [22,23]) weak energy norms, finite element methods and special meshes for one-dimensional
problems are used. In the paper [24] of Ross and Stynes, uniform convergence of an upwind type
method is proved. For two-dimensional stationary problems, the papers of Hegarty et al. [8,9] and
Clavero et al. [4], present some numerical results obtained using two-dimensional Shishkin meshes for
regular and parabolic layers. The book of Miller et al. [16] gives the most recent results on numerical
approximation of singularly perturbed problems on Shishkin meshes. The method that we propose
in this paper uses some of these special meshes, which are appropriate for discretizing the type of
one-dimensional problems resulting from the time discretization process.

The remainder of this section is devoted to a detailed description of the algorithm. In Section 2,
under certain hypotheses on the smoothness and the asymptotic structure of the exact solution, we
prove the uniform convergence of the method. In Section 3, we prove some results, which are needed
in Section 2, concerning the L∞-uniform convergence of the simple upwind method on special meshes.
In Section 4, some numerical results are given. These ones illustrate how well the proposed algorithm
works. Finally, in Appendix A we give the outlines of some results concerning the behavior of exact
solutions of continuous and semidiscrete problems and their derivatives.

For simplicity, we shall consider the following initial boundary value problem:

∂u

∂t
− ε∆u+−→v −→∇u+ ku = f in Ω × [0, T ] ≡ (0, 1)× (0, 1)× (0, T ],

u(x, y, 0) = u0(x, y) in Ω, (1.1)

u(x, y, t) = 0 in ∂Ω × (0, T ].



C. Clavero et al. / Applied Numerical Mathematics 27 (1998) 211–231 213

Throughout this paper we set

Lx,ε ≡ −ε
∂2

∂x2 + v1
∂

∂x
+ k1, (1.2)

Ly,ε ≡ −ε
∂2

∂y2 + v2
∂

∂y
+ k2. (1.3)

The operators Lx,ε can be considered as a family of one-dimensional differential operators with one
parameter y ∈ (0, 1) (similar comments can be applied to Ly,ε). Let us also also consider decompo-
sitions for the source term f(x, y, t) = f1(x, y, t) + f2(x, y, t). As a first stage towards defining the
algorithm, we introduce a time discretization process by means of the following fractional step scheme
(see Jorge and Lisbona [11], Yanenko [25]):

u0 = u0(x, y), (1.4a)

(I + ∆tLx,ε)un+1/2 = un + ∆tf1(tn+1), y ∈ (0, 1),

un+1/2(0, y) = un+1/2(1, y) = 0, (1.4b)

(I + ∆tLy,ε)un+1 = un+1/2 + ∆tf2(tn+1), f1 + f2 = f, x ∈ (0, 1),

un+1(x, 0) = un+1(x, 1) = 0, (1.4c)

in such way that we could obtain semidiscrete approximations un(x, y) to the solution u(x, y, t) of
(1.1) at the time levels tn = n∆t, by solving exactly the elliptic problems of steps (1.4b), (1.4c). The
second stage consists of obtaining appropriate approximations for (1.4b), (1.4c). To do that, we define
a not necessarily uniform rectangular mesh Ωε,h as the tensor product Ix,ε,h×Iy,ε,h of one-dimensional
Shishkin meshes, which will be generated in the following form. Let h = 1/N with 1

4N ∈ N. Then,
we take

σ = min
{

1
4 ,mε logN

}
, (1.5)

where m is a constant which we choose satisfying m > 1/v, we divide the interval [0, 1] into two
subintervals [0, 1− σ] and [1− σ, 1] and we define

Ix,ε,h ≡ {x0, x1, . . . , x3N/4 = 1− σ, . . . , xN}, (1.6)

with

xi =


i

4(1− σ)

3N
, i = 0, . . . , 3

4N ,

1− σ +

(
i− 3N

4

)
4σ
N
, i = 3

4N + 1, . . . ,N ,

(and analogously we can proceed for Iy,ε,h).
Using the notation [·]h for the restriction of a function defined in [0, 1] × [0, 1] to Ωε,h, we will

compute the totally discrete approximations unh to [u(tn)]h by

u0
h = [u0]h, (1.7a)

(I + ∆tLx,ε,h)u
n+1/2
h = unh + ∆t

[
f1(x, y, tn+1)

]
h
, y ∈ Iy,ε,h,

(1.7b)
u
n+1/2
h (0, y) = u

n+1/2
h (1, y) = 0,
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(I + ∆tLy,ε,h)un+1
h = u

n+1/2
h + ∆t

[
f2(x, y, tn+1)

]
h
, x ∈ Ix,ε,h,

(1.7c)
un+1
h (x, 0) = un+1

h (x, 1) = 0,

where Lx,ε,h (and analogously Ly,ε,h) is the discretization of the differential operator Lx,ε (Ly,ε) using
the simple upwind finite difference scheme.

Finally, we want emphasize that each time step of (1.7) requires only the resolution of a set of
uncoupled tridiagonal systems. Consequently, a low computational cost is needed by resolving with
this algorithm. Furthermore, an easy and efficient implementation for parallel computation is possible.

Henceforth, we denote by C any positive constant that is independent of parameters ε, ∆t and N .

2. Convergence analysis

We shall study firstly the convergence of the semidiscretization in time process (1.4).
Since the operators (I + ∆tLi,ε), i = x, y, satisfy a maximum principle, it is not difficult to deduce∥∥(I + ∆tLi,ε)−1

∥∥
∞ 6

1

1 + kj∆t
, (2.1)

with i = x, j = 1 or i = y, j = 2 and kj = min(x,y)∈Ω kj > 0, j = 1, 2. This ensures the stability of
scheme (1.4) (for more details see [2]). In order to analyze the convergence, we introduce the local
error en+1 defined by

en+1 = u(tn+1)− ûn+1,

where ûn+1 is the approximation to u(tn+1) given after a time step by (1.4), taking u(tn) as the
starting value un, i.e.,

un = u(tn), (2.2a)

(I + ∆tLx,ε)ûn+1/2 = un + ∆tf1(tn+1),
(2.2b)

un+1/2(0, y) = un+1/2(1, y) = 0,

(I + ∆tLy,ε)ûn+1 = ûn+1/2 + ∆tf2(tn+1),
(2.2c)

un+1(x, 0) = un+1(x, 1) = 0.

The following consistency result is obtained:

Lemma 2.1. Let us assume that{
u,
∂u

∂t
,
∂2u

∂t2

}
⊂ C0(Ω × [0, T ]

)
(2.3)

and that they are bounded independently of ε, i.e.,∣∣∣∣ ∂i∂tiu(x, y, t)

∣∣∣∣ 6 C, (x, y, t) ∈ Ω × [0, T ], i 6 2. (2.4)

Then, the local error satisfies

‖en+1‖∞ 6 C(∆t)2. (2.5)
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In Appendix A we show briefly that it is possible to obtain (2.4) ε-independently if data are ε-in-
dependently smooth and compatible.

Combining (2.5) with the stability result (2.1), it is not difficult to show the following convergence
result.

Theorem 2.2. Under assumptions of Lemma 2.1, we have

sup
n6T/(∆t)

∥∥u(tn)− un
∥∥
∞ 6 C∆t. (2.6)

For more details of the proofs of Lemma 2.1 and Theorem 2.2, see [1,2].
We study now the approximation properties of the spatial discretization process. To do that, we

shall compare ûn+1 and ûn+1
h , the solutions obtained after a complete time step from (1.4) taking

un ≡ u(tn), and from (1.7) taking unh = [u(tn)]h, respectively.
Since the discrete operators (I + ∆tLi,ε,h), i = x, y, satisfy a maximum principle, we have∥∥(I + ∆tLi,ε,h)−1

∥∥
∞ 6 1, i = x, y, (2.7)

and therefore the total discretization is uniformly stable. Thus, we can prove the following theorem.

Theorem 2.3. Let us assume that ûn+1/2 and ûn+1 have the asymptotic behavior given by (3.2)–(3.4).
Then, if we take N−q 6 C∆t with 0 < q < 1, we have∥∥[ûn+1]

h
− ûn+1

h

∥∥
∞ 6 C ∆tN q−1 logN. (2.8)

The proof of this theorem consists of combining, in standard way, the stability result (2.1) and the
uniform convergence results of Section 3 (see also [3]).

Finally, in order to prove the uniform convergence of the totally discrete scheme we split the global
error in the form∥∥[u(tn)

]
h
− unh

∥∥
∞ 6

∥∥[u(tn)
]
h
− [ûn]h

∥∥
∞ +

∥∥[ûn]h − ûnh
∥∥
∞ +

∥∥ûnh − unh∥∥∞.
Combining the results of Lemma 2.1, Theorem 2.2 and (2.1), we obtain the following result (see [3]).

Theorem 2.4. Let u be the solution of (1.1) and {unh}n the solution of (1.7). Under the hypotheses of
Lemma 2.1 and Theorem 2.2, there exists a constant C such that∥∥[u(tn)

]
h
− unh

∥∥
∞ 6 C

(
∆t+N q−1 logN

)
, (2.9)

with 0 < q < 1.

3. Analysis of spatial discretization

In this section we study the approximation properties of the space discretization of the time semidis-
crete problems (2.2). We only show the convergence of the numerical solution of problem

(I + ∆tLx,ε,h)û
n+1/2
h =

[
u(x, y, tn)

]
h

+ ∆t
[
f1(x, y, tn+1)

]
h
, y ∈ Iy,ε,h,

û
n+1/2
h (0, y) = û

n+1/2
h (1, y) = 0,
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to the exact solution of (2.2b), and similarly we can proceed for (2.2c).
Since the singular perturbation problems (2.2b) are essentially one-dimensional, they can be written

in the form

(I + ∆tLx,ε)w ≡ −ε∆tw′′(x) + v1(x, y)∆tw′(x) +
(
1 + ∆tk1(x, y)

)
w(x)

= u(x, y, tn) + ∆tf1(x, y, tn+1), 0 < x < 1, (3.1a)

w(0) = 0, w(1) = 0, (3.1b)

where y is a parameter (0 < y < 1), w(x) = ûn+1/2(x, y), v1(x, y) > v > 0, k1(x, y) > 0 and v1, k1,
f1 are sufficiently smooth in Ω. In the remainder of this section we will suppose (see Appendix A for
justification) that w ≡ w(x, ε) satisfies

w(x, ε) = w1(x, ε) + z(x, ε), (3.2)

where

w1(x, ε) = cye−v1(1,y)(1−x)/ε, |cy| 6 C, (3.3)

and ∣∣z(i)(x, ε)
∣∣ 6 C(1 + ε−i+1e−v(1−x)/ε

)
, 0 6 i 6 4. (3.4)

To solve numerically (3.1) we consider the upwind difference scheme on the mesh Ix,ε,h defined by
(1.5), (1.6), which is piecewise uniform with 3

4N+1 points in [0, 1−σ] and 1
4N+1 points in [1−σ, 1],

and which is uniform if σ = 1
4 . Let us denote

hj = xj − xj−1, j = 1, . . . ,N, h̃j =
hj + hj+1

2
, j = 1, . . . ,N − 1,

H = max
j
hj and ρj =

hj
ε
, j = 1, . . . ,N.

It holds

hj =


4(1− σ)

3N
, j = 1, . . . , 3

4N ,

4σ
N
, j = 3

4N + 1, . . . ,N .

On this mesh the scheme is defined by

(I + ∆tLx,ε,h)Wj ≡ r−j Wj−1 + rcjWj + r+
j Wj+1 = fj, j = 1, . . . ,N − 1, (3.5)

W0 = 0, WN = 0, (3.6)

with

r−j =
−ε∆t
hj h̃j

− v1,j∆t
hj

, r+
j =

−ε∆t
hj+1h̃j

, rcj = 1 + ∆tk1,j − r−j − r+
j , (3.7)

v1,j = v1(xj , y), k1,j = k1(xj , y), fj = u(xj , y, tn) + ∆tf1(xj , y, tn+1). (3.8)

In order to prove the uniform convergence of the method, we begin by studying its consistency.
The local truncation error at an internal point of the mesh is introduced in standard way by

τj = (I + ∆tLx,ε,h)
(
w(xj)

)
−
(
(I + ∆tLx,ε)w

)
(xj), j = 1, . . . ,N − 1.
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We shall make use of Taylor expansions of functions g(x) in a point a, with the following well-known
expressions for the remainder:

Rn(a, x, g) = g(n+1)(ϕ)
(x− a)n+1

(n+ 1)!
, a < ϕ < x, (3.9)

and

Rn(a, x, g) =
1
n!

x∫
a

(x− s)ng(n+1)(s) ds. (3.10)

We shall also suppose that σ = mε logN (in case σ = 1
4 , h is small with respect to ε and τj can be

bounded in a classical way). Under this assumption, the mesh is not uniform and we study separately
three cases depending on the localization of the point xj in the mesh.

Case 1. 0 < xj < 1− σ. Using Taylor expansions, it is straightforward that the local error is given
by

τj = −hj
2

∆t v1,jw
′′(xj) + r−j R2(xj , xj−1, w) + r+

j R2(xj , xj+1, w). (3.11)

We distinguish two possibilities to find appropriate estimates of this error, depending on the value
of ρj .

(i) If ρj 6 1, using (3.2)–(3.4) to estimate the derivatives of w, the expression (3.9) for the
remainder and the values of the coefficients r−j , r+

j , it is easy to obtain

|τj | 6 C∆thj
(
1 + ε−2e−v(1−xj)/ε). (3.12)

(ii) If ρj > 1, we use the decomposition (3.2) denoting by τ 1
j and τ 2

j the local errors corresponding
to the functions z(x, ε) and w1(x, ε), respectively. Using the estimates (3.4) and the integral
form of the remainder (3.10), we deduce∣∣∣∣hj∆tv1,j

2
z′′(xj)

∣∣∣∣ 6 C∆thj
(
1 + ε−1e−v(1−xj)/ε),

∣∣r−j R2(xj, xj−1, z)
∣∣6C∆t

ε+ v1,jhj
h2
j

xj∫
xj−1

(xj−1 − s)2(1 + ε−2e−v(1−s)/ε)ds
6C∆thj

(
hj + ε−1e−v(1−xj)/ε).

Likewise,∣∣r+
j R2(xj, xj+1, z)

∣∣ 6 C∆thj + C∆te−v(1−xj+1)/ε.

Hence, using the three preceding estimates, we obtain∣∣τ 1
j

∣∣ 6 C∆thj
(
1 + ε−1e−v(1−xj)/ε)+ C∆te−v(1−xj+1)/ε.

To bound |τ 2
j |, we proceed in a different way, since the function w1(x, ε) is known and we can

calculate τ 2
j exactly. Then,
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τ 2
j =w1(xj , ε)

[
r−j
(
e−v1(1,y)hj/ε − 1

)
+ r+

j

(
ev1(1,y)hj+1/ε − 1

)
+

∆tv1(1, y)(v1(1, y)− v1,j)

ε

]
, (3.13)

and using (3.7), it is easy to prove that∣∣τ 2
j

∣∣ 6 C∆t
hj

e−v(1−xj+1)/ε + C∆tε−1e−v(1−xj)/ε.

Finally,

|τj |6
∣∣τ 1
j

∣∣+
∣∣τ 2
j

∣∣ 6 C∆thj + C∆tε−1e−v(1−xj)/ε +
C∆t
hj

e−v(1−xj+1)/ε

=C∆thj +
C∆t
hj+1

hj+1ε
−1e−vhj+1/εe−v(1−xj+1)/ε +

C∆t
hj

e−v(1−xj+1)/ε

6C∆thj +
C∆t
hj

e−v(1−xj+1)/ε, (3.14)

since hj = hj+1 and

hj+1

ε
e−vhj+1/ε 6 C.

Case 2. 1− σ < xj < 1. In this case the study of τj is straightforward. Using the expression (3.11)
for the local error, the estimates for the exact solution given in (3.2)–(3.4) and (3.9) for the remainder
of the Taylor expansions, we obtain

|τj| 6 C∆thj
(
1 + ε−2e−v(1−xj)/ε). (3.15)

Case 3. xj = 1 − σ. Here, we shall distinguish again two possibilities depending on the value of
ρj .

(i) If ρj 6 1, similar arguments to those used in Case 1(i) permit us to prove

|τj | 6 C∆thj
(
1 + ε−2e−v(1−xj)/ε). (3.16)

(ii) If ρj > 1, we write the local error in the form

τj = r−j R1(xj, xj−1, w) + r+
j R1(xj , xj+1, w) + ∆tεw′′(xj)

and we denote by τ 1
j , τ 2

j the same parts of error as in Case 1(ii).
Using the estimates given by (3.4), the remainder of the Taylor expansion in the form (3.10) and

the expressions (3.7) for the coefficients, we have∣∣∆tεz′′(xj)∣∣ 6 C∆tε
(
1 + ε−1e−v(1−xj)/ε) 6 C∆thj + C∆te−v(1−xj)/ε,

∣∣r−j R1(xj , xj−1, z)
∣∣6C∆t

ε+ v1,jhj
h2
j

xj∫
xj−1

∣∣(xj−1 − s)
∣∣(1 + ε−1e−v(1−s)/ε) ds

6C∆thj + C∆te−v(1−xj)/ε,
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and ∣∣r+
j R1(xj , xj+1, z)

∣∣6C∆t
ε

h2
j

xj+1∫
xj

∣∣(xj+1 − s)
∣∣(1 + ε−1e−v(1−s)/ε) ds

6C∆thj + C∆te−v(1−xj+1)/ε.

From the three preceding estimates, we obtain∣∣τ 1
j

∣∣ 6 C∆thj + C∆te−v(1−xj+1)/ε.

To bound τ 2
j , we use (3.13) obtaining∣∣r−j (e−v1(1,y)hj/ε − 1

)
+ r+

j

(
ev1(1,y)hj+1/ε − 1

)∣∣ 6 C∆t
hj

,

and ∣∣∣∣∆tv1(1, y)(v1(1, y)− v1,j)

ε

∣∣∣∣ 6 C∆tσ
ε
6 C∆t

hj
.

In the last inequality we have taken into account that hj = 4(1 − σ)/(3N), σ = mε logN and
4(1− σ) logN 6 CN . Therefore,∣∣τ 2

j

∣∣ 6 C∆t
hj

e−v(1−xj)/ε.

Finally, from the last estimates for |τ 1
j | and |τ 2

j |, we deduce that

|τj|6C∆thj +
C∆t
hj

e−v(1−xj)/ε + C∆te−v(1−xj+1)/ε 6 C∆thj +
C∆t
hj

e−v(1−xj+1)/ε. (3.17)

Let us remark that we have just found estimates for the local error that are not uniform in ε. To
obtain an uniform convergence result we shall instead use the barrier function technique (see Kellogg
and Tsan [12]). Thus, let us define

Φ1,j = 1 + xj, Φ2,j(β) =
1∏N

i=j+1 µi(β)
, µi(β) = 1 +

βhi
ε
,

with β a constant to be fixed later. Applying the finite difference operator to the barrier functions, we
have the following estimates:

(I + ∆tLx,ε,h)
(
Φ1,j(β)

)
= (1 + ∆tk1,j)(1 + xj) + v1,j∆t > ∆t v > 0,

(I + ∆tLx,ε,h)
(
Φ2,j(β)

)
= r−j Φ2,j−1(β) + rcjΦ2,j(β) + r+

j Φ2,j+1(β)

> Φ2,j(β)

[
r−j

(
1

µj(β)
− 1

)
+ r+

j

(
uj+1(β)− 1

)]
.

(3.18)

Simple calculations render

(I + ∆tLx,ε,h)
(
Φ2,j(β)

)
> Φ2,j(β)

β∆t
h̃j

v1,jh̃j − βhj
ε+ βhj

. (3.19)

For a deeper study of these estimates, we shall distinguish the same cases as in the previous study of
the local error.
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Case 1. Note that hj = hj+1 = h̃j . Using (3.19), we obtain

(I + ∆tLx,ε,h)
(
Φ2,j(β)

)
> C(β)∆t

max{ε, hj}
Φ2,j(β), (3.20)

with β 6 v.
Case 2. Again, hj = hj+1 = h̃j and using (3.19) we deduce (3.20), if condition β 6 v is satis-

fied.
Case 3. Now using (3.19) we have

(I + ∆tLx,ε,h)
(
Φ2,j(β)

)
>Φ2,j(β)

β∆t
h̃j

(v1,j − 2β)hj
2(ε+ βhj)

> C(β)∆t
max{ε, hj}

Φ2,j(β), (3.21)

where the last inequality holds only if β 6 v/2. Hence, under condition β 6 v/2, in all cases we have
proved that

(I + ∆tLx,ε,h)
(
Φ2,j(β)

)
> C∆t

max{ε, hj}
Φ2,j(β). (3.22)

In order to combine the estimates obtained for the local truncation error with the estimates for the
barrier functions, to prove the uniform convergence of the simple upwind scheme, we will use the
following technical result.

Lemma 3.1. For all β > 0 we have:

(i) Φ2,j(β) > e−β(1−xj)/ε. (3.23)

(ii) If hi 6 ε for i > j + 1 then

1∏N
i=j+1 µi(β)

6 C∏N
i=j+1 e2βhi/ε

. (3.24)

Theorem 3.2. Let w(x, ε) be the exact solution of problem (3.1) and {Wj} the numerical solution
of upwind scheme (3.5)–(3.8) defined on the special mesh Ix,ε,h given by (1.5), (1.6). Then, if we
choose m > 1/v and β = v/2, there exists a positive constant C independent of y, ε and N , such
that ∣∣w(xj , ε) −Wj

∣∣ 6 CN−1 logN.

Proof. Let us denote by ej = w(xj , ε)−Wj the global error in xj . To bound |ej |, we shall distinguish
two cases. If ρj 6 1, we take

K1(hj , ε) = Chj, K2(hj , ε) = C
hj
ε
.

Then, using the estimates (3.12) and (3.15)–(3.17) for the local error, the estimates given in (3.21)
and Lemma 3.1, we deduce

(I + ∆tLx,ε,h)
(
K1Φ1,j(β) +K2Φ2,j(β)

)
> |τj|
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and using the discrete maximum principle for the operator (I + ∆tLx,ε,h) and the condition βm > 1,
we obtain

|ej | 6 Chj + C
hj
ε
Φ2,j(β) 6 CN−1 logN.

If ρj > 1, taking

K1(hj , ε) = Chj, K2(hj , ε) = Cµj+1(β),

we deduce again

(I + ∆tLx,ε,h)
(
K1Φ1,j(β) +K2Φ2,j(β)

)
> |τj|,

so, the maximum principle permit us to prove

|ej | 6 Chj +
C

N2βm 6 CN
−1. 2

Note that under the same hypotheses of Theorem 2.4, if we impose N−q 6 C∆t, with 0 < q < 1,
we obtain∣∣w(xj , ε) −Wj

∣∣ 6 C∆tN−1+q logN,

which is the required result in Section 2.

4. Numerical results

In this section we show some numerical results obtained in the integration of two problems of type
(1.1). In both cases we use a constant time step and special meshes in the spatial variables. We have
first considered an example with known exact solution in order to compute exactly the pointwise errors

eN,∆tε (i, j, n) =
∣∣uε(xi, yj , tn)− uN (xi, yj, tn)

∣∣,
where the superscript N indicates the number of mesh points used in the x- and y-directions, and ∆t
the stepsize in time. For each ε the maximum nodal error is given by

Eε,N,∆t = max
i,j,n

eN,∆tε (i, j, n)

and, for each N and ∆t, the ε-uniform maximum nodal error is defined by

EN,∆t = max
ε
Eε,N,∆t.

Computed values of Eε,N,∆t and EN,∆t for this problem are given in Table 1 for various values of ε,
N and ∆t.

A second example whose exact solution is not known is also considered. In this case, the pointwise
error eN,∆tε (i, j, n) is estimated by eN,∆t,∗ε (i, j, n) = |u(xi, yj , tn)− uN (xi, yj, tn)| where u(xi, yj, tn)
denote the numerical solution obtained by the method using a special mesh with N = 256 points in
each spatial direction and ∆t = 0.003125. Then, in a similar way as before, we define E∗ε,N,∆t and
E∗N,∆t. Note that the meshes are not uniform, thus we use a bilinear interpolation to obtain u on the
coarse mesh.
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To obtain a numerical ε-uniform rate of convergence, we proceed in a similar way to the double-
mesh principle (see, e.g., Hegarty et al. [8]), but doubling the number of points in the mesh instead
of half the mesh size. Then, the numerical order of convergence is given by

p =
log (Eε,N,∆t/Eε,2N,∆t)

log 2
or p =

log(E∗ε,N,∆t/E
∗
ε,2N,∆t)

log 2
,

if the exact solution is known or unknown, respectively. We recall that a numerical method for
solving (1.1) is said to have an ε-uniform rate of convergence of order p on the sequence of meshes
{ΩN}∞1 × {tn}T0 if there exist N0 and ∆t0, independent of ε, such that for all N > N0 and ∆t 6 ∆t0

sup
06tn6T

(
sup

0<ε61

∥∥u− uN∥∥
ΩN ,tn

)
6 C

(
∆t+N−1)p

(‖w‖ΩN ,tn ≡ max(xi,yj)∈ΩN |w(xi, yj, tn)|), where u is the solution of (1.1), uN is the numerical
approximation to u and C and p > 0 are independent of ε, ∆t and N .

In the numerical examples below, we choose the following decomposition of the function f :

f1(x, y, t) = f(x, y, t)− f2(x, y, t),

f2(x, y, t) = f(x, 0, t) + y
(
f(x, 1, t)− f(x, 0, t)

)
.

(4.1)

With this special decomposition, the hypothesis

f(0, 0, t) = f(0, 1, t) = f(1, 0, t) = f(1, 1, t) = 0 (4.2)

clearly gives

f1(x, 0, t) = f1(x, 1, t) = 0, f2(0, y, t) = f2(1, y, t) = 0. (4.3)

This property is needed for us to prove the asymptotic behavior of exact solution of problem (1.1)
and semidiscrete problems (3.1) (see Appendix A).

The mesh refinement strategy that we have used for our numerical experiments, fails to satisfy
the hypothesis N−q 6 C∆t at the limit. However, the obtained results show a reduction of the error
which gives the convergence of the method. Therefore, this hypothesis seems to be unnecessary for
convergence or order given in Theorem 2.4. On the other hand, the influence of q in the estimated
order of convergence would not exist if the hypothesis reveals unnecessary. Anyway, the presence of
logN makes it difficult to appreciate if there is an actual reduction from N−1 logN to N−1+q logN .
This difficulty would appear even if we take the care of making all meshes satisfying the restriction
above.

We want also remark that, from both theoretical and numerical points of view, the choice of de-
composition k = k1 + k2 (ki smooth and positive) only affects to the error constant C of the global
error.

The numerical simulations have been performed on a DEC 3000 Model 500/S with OpenVMS.

Example 1.

ut − ε∆u+ (1 + x)ux + (2− y)uy +
(
x2 + y2 + 1

)
u = f, (x, y, t) ∈ Ω × (0, 2],

u(x, y, t) = 0 in ∂Ω × (0, 2],

u(x, y, 0) = 0, (x, y) ∈ Ω,
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Table 1
Maximum nodal errors Eε,N,∆t and EN,∆t for Example 1

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

∆t = 0.1 ∆t = 0.05 ∆t = 0.025 ∆t = 0.0125 ∆t = 0.00625 ∆t = 0.003125

1 7.921E−3 4.803E−3 2.678E−3 1.418E−3 7.306E−4 3.709E−4

10−1 1.252E−1 9.826E−2 6.117E−2 3.434E−2 1.835E−2 9.501E−3

10−2 2.317E−1 1.794E−1 1.251E−1 8.124E−2 5.072E−2 3.014E−2

10−3 2.506E−1 1.986E−1 1.430E−1 9.340E−2 5.760E−2 3.395E−2

10−4 2.526E−1 2.008E−1 1.455E−1 9.549E−2 5.915E−2 3.508E−2

10−5 2.528E−1 2.011E−1 1.457E−1 9.574E−2 5.933E−2 3.523E−2

10−6 2.528E−1 2.011E−1 1.457E−1 9.574E−2 5.935E−2 3.524E−2

10−7 2.528E−1 2.011E−1 1.457E−1 9.574E−2 5.935E−2 3.524E−2

EN,∆t 0.2528 0.2011 0.1457 0.0957 0.0593 0.0352

Table 2
Numerical order of convergence for Example 1

ε N = 8 N = 16 N = 32 N = 64 N = 128

1 0.721 0.842 0.917 0.956 0.988

10−1 0.349 0.683 0.832 0.904 0.949

10−2 0.369 0.520 0.622 0.679 0.750

10−3 0.335 0.473 0.614 0.697 0.762

10−4 0.331 0.464 0.607 0.690 0.753

10−5 0.330 0.464 0.605 0.690 0.752

10−6 0.330 0.464 0.607 0.689 0.752

10−7 0.330 0.464 0.607 0.689 0.752

Min. 0.330 0.464 0.605 0.679 0.750

where f is such that the exact solution is given by

uε(x, y, t) = e−txy
(
h1(x)− 1

)(
h2(y)− 1

)
,

with

h1(ζ) = e(−3−2ζ−ζ2)/(2ε), h2(ζ) = e−(3−4ζ+ζ2)/(2ε).

Example 2.

ut − ε∆u+

(
1− xy

2

)
ux +

(
1 +

xy

2

)
uy = f(x, y), (x, y, t) ∈ Ω × (0, 2],

u(x, y, t) = 0 in ∂Ω × (0, 2],

u(x, y, 0) = 0, (x, y) ∈ Ω,
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Table 3
Maximum nodal errors E∗ε,N,∆t and E∗N,∆t for Example 2

ε N = 8 N = 16 N = 32 N = 64 N = 128

∆t = 0.1 ∆t = 0.05 ∆t = 0.025 ∆t = 0.0125 ∆t = 0.00625

1 1.010E−2 5.945E−3 3.123E−3 1.423E−3 4.896E−4

2−2 2.544E−2 1.400E−2 6.949E−3 3.073E−3 1.041E−3

2−4 7.254E−2 4.364E−2 2.489E−2 1.248E−2 4.380E−3

2−6 1.138E−1 7.465E−2 4.225E−2 2.058E−2 7.491E−3

2−8 1.284E−1 8.256E−2 4.944E−2 2.812E−2 1.121E−2

2−10 1.326E−1 8.578E−2 4.885E−2 2.529E−2 1.255E−2

2−12 1.337E−1 8.687E−2 4.958E−2 2.460E−2 9.732E−3

2−14 1.340E−1 8.715E−2 4.977E−2 2.471E−2 9.202E−3

2−16 1.341E−1 8.722E−2 4.981E−2 2.474E−2 9.213E−3

2−18 1.341E−1 8.724E−2 4.982E−2 2.474E−2 9.215E−3

2−20 1.341E−1 8.724E−2 4.983E−2 2.475E−2 9.216E−3

EN,∆t∗ 0.13416 0.08724 0.04983 0.02812 0.01121

Table 4
Numerical order of convergence for Example 2

ε N = 8 N = 16 N = 32 N = 64

1 0.766 0.929 1.134 1.539

2−2 0.861 1.011 1.177 1.561

2−4 0.733 0.810 0.996 1.511

2−6 0.609 0.821 1.038 1.458

2−8 0.637 0.740 0.814 1.326

2−10 0.629 0.812 0.950 1.010

2−12 0.623 0.809 1.011 1.338

2−14 0.621 0.808 1.010 1.425

2−16 0.621 0.808 1.010 1.425

2−18 0.621 0.808 1.010 1.425

2−20 0.621 0.808 1.010 1.425

Min. 0.609 0.740 0.814 1.010

where

f(x, y) = sin
(
πx(1− x)

)
sin
(
πy(1− y)

)
.



C. Clavero et al. / Applied Numerical Mathematics 27 (1998) 211–231 225

Appendix A

In this appendix we expose the outlines to obtain the bounds for the solutions and their derivatives
of problems (1.1) and (2.2), which are necessary for the uniform convergence analysis carried out in
the previous sections.

Starting with problem (1.1) we will denote D ≡ Ω × [0, T ], S ≡ ∂Ω × [0, T ], and we will suppose
enough smoothness of functions −→v , k, f , u0 and also enough compatibility conditions (see [13, p. 206;
15, pp. 319–320]) between initial and boundary data, in such way that for l sufficiently large and a
not integer α, the solution of (1.1) satisfies

u(x, y, t) ∈ C l+α,l+α,(l+α)/2(Ω × [0, T ]
)
.

Among these compatibility conditions we will remark the following one:

f(0, 0, t) = f(0, 1, t) = f(1, 0, t) = f(1, 1, t) = 0, ∀t ∈ [0, T ]. (A.1)

This condition is required for the asymptotic study which we carry out on the semidiscrete in time
solutions. It was shown in [20,21] that the solution of problem (1.1) can be decomposed in two addenda
u = U + V , where U and V are the regular and singular parts of u, respectively, which are defined
as solutions of the following problems. On the one hand, V is the solution of

∂V

∂t
− ε∆V +−→v −→∇V + kV = 0 in D,

V (x, y, 0) = 0 in Ω,

V (x, y, t) = −U(x, y, t) in S.

On the other hand, U is the restriction to D of the solution of
∂U∗

∂t
− ε∆U∗ +−→v

∗−→∇U∗ + k∗U∗ = f∗ in D∗ ≡ Ω∗ × [0, T ],

U∗(x, y, 0) = u∗0 in Ω∗,

U∗(x, y, t) = g∗(x, y, t) in S∗ ≡ ∂Ω∗ × [0, T ],

where Ω∗ is a smooth extension of Ω, −→v
∗
, k∗, f∗ are smooth extensions of −→v , k, f to D∗, u∗0

is an extension of u0 to Ω∗ and g∗ is a smooth and compatible function. Since we have supposed
−→v = (v1, v2) with vi(x, y) > v > 0, i = 1, 2, the singular part V can be decomposed in the form
V = V1 + V2 + V 1, where V1 and V2 are one-dimensional boundary layers in neighborhoods of sides
x = 1 and y = 1 of Ω, respectively, and V 1 is a corner layer on neighborhood of (1, 1).

Function V1 (and analogously V2) can be obtained as a restriction to D of the solution of

∂V ∗∗1

∂t
− ε∆V ∗∗1 +−→v ∗∗−→∇V ∗∗1 + k∗∗V ∗∗1 = 0 in D∗∗ ≡ Ω∗∗ × [0, T ],

V ∗∗1 (x, y, 0) = 0 in Ω∗∗,

V ∗∗1 (x, y, t) = −U∗∗ in ∂Ω∗∗1 × [0, T ],

V ∗∗1 (x, y, t) = 0 in ∂Ω∗∗2 × [0, T ],

where Ω∗∗ is a smooth extension of Ω near the vertex (1, 1) (see Fig. A.1), ∂Ω∗∗1 is an extension of
the boundary side x = 1 beyond the point (1,1) and ∂Ω∗∗2 = ∂Ω∗∗\∂Ω∗∗1 , and also U∗∗ is a smooth
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Fig. A.1.

and compatible extension of U(1, y, t) to ∂Ω∗∗1 , as well as −→v ∗∗, k∗∗ are smooth extensions of −→v , k
to D∗∗.

The function V 1 is the solution of

∂V 1

∂t
− εV 1 +−→v −→∇V 1 + kV 1 = 0 in D,

V 1(x, y, 0) = 0 in Ω,

V 1(x, y, t) = −(U + V1 + V2) in S.

According to the results of [20,21], the following bounds are obtained:∣∣∣∣∂ks+ktU(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ 6 C,∣∣∣∣∂ks+ktV1(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ 6 Cε−kx exp

(
−v(1− x)

ε

)
,∣∣∣∣∂ks+ktV2(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ 6 Cε−ky exp

(
−v(1− y)

ε

)
,∣∣∣∣∂ks+ktV 1(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ 6 Cε−ks min

{
exp

(
−v(1− x)

ε

)
, exp

(
−v(1− y)

ε

)}
,

where ks = kx + ky , ks + 2kt 6 l and (x, y, t) ∈ Ω × [0, T ].
Now we study the behavior, with respect to the singular perturbation parameter ε, of the solutions of

(2.2b) and their derivatives. An analogous development can be carried out for (2.2c). In fact, we will
have to prove bounds (ε-dependent) for ûn+1/2(x, y) (respectively ûn+1(x, y)), solutions of (2.2b)
(respectively (2.2c)), and their x-derivatives (respectively y-derivatives) up to order 3.

As a previous technical requirement, we will assume that∣∣Lx,εu(x, y, tn)
∣∣ 6 C, ∣∣L2

x,εu(x, y, tn)
∣∣ 6 C,∣∣Ly,εu(x, y, tn)

∣∣ 6 C, ∣∣L2
y,εu(x, y, tn)

∣∣ 6 C. (A.2)
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In the case v1 = v1(x), v2 = v2(y), k1 = k1(x), k2 = k2(y), these assumptions can be immediately
proved by the fact that functions V ≡ Lx,εu and W ≡ Lx,εV are the respective solutions of the
initial-boundary value parabolic problems

∂V

∂t
− ε∆V +−→v −→∇V + kV = Lx,εf in Ω × [0, T ],

V (x, y, 0) = Lx,εu0(x, y) in Ω,

V (0, y, t) = f(0, y, t), V (1, y, t) = f(1, y, t) in [0, 1]× [0, T ],

V (x, 0, t) = V (x, 1, t) = 0 in [0, 1]× [0, T ],

and
∂W

∂t
− ε∆W +−→v −→∇W + kW = L2

x,εf in Ω × [0, T ],

W (x, y, 0) = Lx,εV (x, y, 0) in Ω,

W (0, y, t) = Lx,εf(0, y, t)−
(
∂f

∂t
(0, y, t) + Ly,εf(0, y, t)

)
in [0, 1]× [0, T ],

W (1, y, t) = Lx,εf(0, y, t)−
(
∂f

∂t
(0, y, t) + Ly,εf(1, y, t)

)
in [0, 1]× [0, T ],

W (x, 0, t) = W (x, 1, t) = 0 in [0, 1]× [0, T ].

A maximum principle for these problems together with suitable smoothness and compatibility condi-
tions for u0 and f give the desired bounds for V and W . Analogously we can prove the same bounds
for Ly,ε, L2

y,ε.
For general v1(x, y), v2(x, y), k1(x, y) and k2(x, y), condition (A.2) is also true but not so easy to

prove. In [21] it is shown that the corner layer V 1 can be expanded in the form V 1 = V 0 + εV 1 + v1,
where v1 is the remainder term. Then, for V1, V2 and v1 it is easy to prove that Lx,εV1, L2

x,εV1, Lx,εV2,
L2
x,εV2, Lx,εv1 and L2

x,εv1 are bounded independently of ε (similarly for Ly,ε). To obtain the same
bounds for V 0 and V 1 we use analytical formulae, so we can deduce (A.2).

Note that |ûn+1/2| 6 C by (2.1). In order to obtain bounds for its x-derivatives we will firstly take
into account that

δ =
ûn+1/2 − u(tn)

∆t
is the solution of

(I + ∆tLx,ε)δ = −Lx,εu(x, y, tn) + f1(x, y, tn+1),

δ(0, y) = δ(1, y) = 0,
(A.3)

where we have |Lx,εu(x, y, tn)| 6 C in Ω from the previous assumptions for the exact solution of the
continuous problem. From (2.1), we obtain |δ| 6 C.

Now, ûn+1/2 can be given as the solution to

Lx,εû
n+1/2 = −δ + f1(x, y, tn+1),

ûn+1/2(0, y) = ûn+1/2(1, y) = 0,
(A.4)
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and proceeding in a similar way as in [12] we prove that∣∣∣∣∂iûn+1/2

∂xi
(0, y)

∣∣∣∣ 6 C, 0 6 i 6 1,∣∣∣∣∂iûn+1/2

∂xi
(1, y)

∣∣∣∣ 6 Cε−i, 0 6 i 6 2,

and ∣∣∣∣∂ûn+1/2

∂x

∣∣∣∣ 6 C[1 + ε−1 exp

(
−v(1− x)

ε

)]
. (A.5)

To obtain bounds for higher order x-derivatives of ûn+1/2, we differentiate (A.4) with respect to x
and obtain

Lx,εs(x, y) =
∂u(x, y, tn)/∂x− ∂ûn+1/2/∂x

∆t
+
∂f1

∂x
− ∂v1

∂x

∂ûn+1/2

∂x
− ∂k1

∂x
ûn+1/2, (A.6)

where s(x, y) = ∂ûn+1/2/∂x. By the same reasoning as we followed for (A.5), we can obtain∣∣∣∣∂2ûn+1/2

∂x2

∣∣∣∣ 6 C[1 + ε−2 exp

(
−v(1− x)

ε

)]
.

To do this we simply need to prove that∣∣∣∣∂u(x, y, tn)/∂x− ∂ûn+1/2/∂x

∆t

∣∣∣∣ 6 C[1 + ε−1 exp

(
−v(1− x)

ε

)]
. (A.7)

Let δ = Lx,εδ, which satisfies

(I + ∆tLx,ε)δ = −L2
x,εu(x, y, tn) + Lx,εf1(x, y, tn+1),

δ(0, y) =
1
∆t
(
f1(0, y, tn+1)− Lx,εu(0, y, tn)

)
, (A.8)

δ(1, y) =
1
∆t
(
f1(1, y, tn+1)− Lx,εu(1, y, tn)

)
.

The required compatibility conditions and the decomposition for f given in (4.1), |L2
x,εu(x, y, tn)| 6 C,

Lx,εu(0, y, tn) = f(0, y, tn) = f1(0, y, tn) and Lx,εu(1, y, tn) = f(1, y, tn) = f1(1, y, tn). Therefore
|δ| 6 C in Ω. Then, in the problem

Lx,εδ= δ, δ(0, y) = δ(1, y) = 0,

we apply the Kellogg and Tsan technique [12] and it follows readily that∣∣∣∣∂δ∂x
∣∣∣∣ 6 C[1 + ε−1 exp

(
−v(1− x)

ε

)]
, ∀(x, y) ∈ Ω,

and hence (A.7).
To obtain the corresponding bound for the third derivative we use a similar idea, differentiating

(A.5), constructing a problem like (A.8) for L2
x,εw and taking into account (4.1) and the compatibility

conditions.
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Finally, the proof of (3.2)–(3.4) is finished in the following way. Let

w1(x, y) = exp

(
−v1(1, y)(1− x)

ε

)
, cy =

ε

v1(1, y)

∂ûn+1/2

∂x
(1, y),

and z(x, y) = ûn+1/2 − cyw1. Then, it holds that∣∣z(0, y)
∣∣ 6 C, ∣∣z(1, y)

∣∣ 6 C, ∣∣∣∣∂z∂x(0, y)

∣∣∣∣ 6 C, ∂z

∂x
(1, y) = 0,

and

Lx,εz=−δ + f1 − k1û
n+1/2 + cy

(
v1(1, y)− v1(x, y)

)∂w1

∂x
+ k1z ≡ g(x, y), (A.9)

being g is a bounded function.
Differentiating (A.9) with respect to x we obtain

Lx,ε
∂z

∂x
=
∂g(x, y)

∂x
− ∂v1

∂x

∂z

∂x
− ∂k1

∂x
z ≡ g1(x, y). (A.10)

Notice that∣∣∣∣∂δ∂x
∣∣∣∣ 6 C[1 + ε−1 exp

(
−v(1− x)

ε

)]
implies∣∣g1(x, y)

∣∣ 6 C[1 + ε−1 exp

(
−v(1− x)

ε

)]
.

Also the boundary conditions for ∂z/∂x are uniformly bounded. Then it follows that∣∣∣∣∂iz∂xi
∣∣∣∣ 6 C[(1 + ε1−i exp

(
−v(1− x)

ε

)]
, 1 6 i 6 2. (A.11)

The proof of a bound similar to (A.11) for i = 3 consists of differentiating (A.10) with respect to x,
taking the corresponding boundary conditions which satisfy the bounds∣∣∣∣∂2z

∂xi
(0, y)

∣∣∣∣ 6 C, ∣∣∣∣∂2z

∂xi
(1, y)

∣∣∣∣ 6 Cε−1,

and using again the same technique.
The bounds for the y-derivatives of ûn+1/2 are obtained by y-differentiating the differential equation

in (2.2b), considering the available bounds for the corresponding right hand side terms and also noticing
the corresponding boundary conditions are null.
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