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Abstract

In this paper we consider numerical schemes for multidimensional evolutionary convection—diffusion problems,
where the approximation properties are uniform in the diffusion parameter. In order to obtain an efficient method,
to provide good approximations with independence of the size of the diffusion parameter, we have developed
a numerical method which combines a finite difference spatial discretization on a special mesh and a fractional
step method for the time variable. The special mesh allows a correct approximation of the solution in the
boundary layers, while the fractional steps permits alow computational cost algorithm. Some numerical examples
confirming the expected behavior of the method are shown. 0 1998 Elsevier Science B.V. and IMACS. All rights
reserved.
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1. Introduction

In this paper we are concerned with the numerical solution of convection—diffusion parabolic prob-
lems, governed by the equation

0
a—ltt —ebu+ T Vu+ ku= f(z,y,t),
where ¢ is a small parameter 0 < e < L and v = (vi(x,9),v2(x,y)), k = k1(x,y) + k2(x,y) and
f = f(z,y,t) are smooth functions, with v; > v > 0, and k; > 0 for i = 1, 2.

It is known that, generally, the solutions of these problems present a multiscale character even for
smooth data, i.e., such solutions vary rapidly in certain narrow regions called layers (for an account of
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asymptotic results about this kind of problems see [14,16,18]). This behavior causes very inaccurate
numerical solutions if standard finite difference or finite e ement methods are used on uniform meshes,
unless a large number (s-dependent) of mesh points is considered.

Such drawback appears even for very simple (one-dimensional and stationary) singular perturbation
problems of this kind, and has led to the development of adaptive techniques, capable of producing
good approximations on meshes with a number of grid points independent of <. In this context, the
uniform convergence is the key property; it means that the rate of convergence and the error constant
of the method are independent of the singular perturbation parameter <.

Two different routes to construct uniformly convergent schemes have been followed in recent years:
firstly, the use of exponentially fitted schemes, which have coefficients of exponential type adapted to
the singular perturbation problems (see [5,6,17]); secondly, the special mesh approach (see [7,10,16]),
which constructs meshes adapted to the solution of the problem. In these two contexts, several schemes
for one-dimensional stationary problems have been deeply studied. This kind of analysis is, however,
a difficult task in the case of multidimensional stationary or evolutionary problems.

The difficulties of the development of exponential fitting schemes for multidimensional problems,
encouraged us to consider, in some earlier papers, see [1,2], an dternating direction method. In this
way, we took advantage of known techniques for uniform convergence of one-dimensional exponential-
fitting schemes, and also of the computational cost reduction yielded by the use of alternating directions.
Some low-cost uniformly convergent methods were developed for certain multidimensional singularly
perturbed parabolic problems.

Recently, a simple type of specia non-uniform meshes (see [19-21]) has permitted the construction
of uniformly convergent methods using standard stable discretizations. In general, it is not easy to
prove the uniform convergence results that the numerical experiments show. In work of Sun and Stynes
(see [22,23]) weak energy norms, finite element methods and special meshes for one-dimensional
problems are used. In the paper [24] of Ross and Stynes, uniform convergence of an upwind type
method is proved. For two-dimensional stationary problems, the papers of Hegarty et al. [8,9] and
Clavero et al. [4], present some numerical results obtained using two-dimensional Shishkin meshes for
regular and parabolic layers. The book of Miller et al. [16] gives the most recent results on numerical
approximation of singularly perturbed problems on Shishkin meshes. The method that we propose
in this paper uses some of these special meshes, which are appropriate for discretizing the type of
one-dimensional problems resulting from the time discretization process.

The remainder of this section is devoted to a detailed description of the algorithm. In Section 2,
under certain hypotheses on the smoothness and the asymptotic structure of the exact solution, we
prove the uniform convergence of the method. In Section 3, we prove some results, which are needed
in Section 2, concerning the Z°°-uniform convergence of the simple upwind method on special meshes.
In Section 4, some numerical results are given. These onesillustrate how well the proposed algorithm
works. Finaly, in Appendix A we give the outlines of some results concerning the behavior of exact
solutions of continuous and semidiscrete problems and their derivatives.

For simplicity, we shall consider the following initial boundary value problem:

ou

= —ebu+ T NVutku=f in2x[0,T]=(0,1) x (0,1) x (0, T,

u(xvyvo) = UO(‘T’Z/) in 12, (11)
u(z,y,t) =0 in 042 x (0,7.
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Throughout this paper we set

Lee= 2 tud g (12)
T, = dx2 1 o 1 :
02 0
Ly7€ = —¢€ a—yz + V2 a_y + k‘z. (13)

The operators L, . can be considered as a family of one-dimensional differential operators with one
parameter y € (0,1) (similar comments can be applied to L, .). Let us aso also consider decompo-
sitions for the source term f(z,y,t) = fi(x,y,t) + fo(z,y,t). As afirst stage towards defining the
algorithm, we introduce a time discretization process by means of the following fractiona step scheme
(see Jorge and Lisbona [11], Yanenko [25]):

u® = uo(z,y), (1.49)
(I + DLy )u™ ™2 = u + Atfi(tna), y € (0,1),

u”+1/2(0, y) = un+1/2(17 y) =0, (1.4b)
(I + DLy Hu™t =" Y2 L Nt fo(tni1), fr+ fa=f, z€(0,1),

"z, 0) = " Y(z,1) = 0, (1.4c)

in such way that we could obtain semidiscrete approximations u"(x,y) to the solution u(x,y,t) of
(1.1) at the time levels t,, = nAt, by solving exactly the elliptic problems of steps (1.4b), (1.4c). The
second stage consists of obtaining appropriate approximations for (1.4b), (1.4c). To do that, we define
anot necessarily uniform rectangular mesh (2. ;, asthe tensor product 1, . j, x I, ., of one-dimensional
Shishkin meshes, which will be generated in the following form. Let h = 1/N with %N € N. Then,
we take

o =min{% melogN}, (1.5)

where m is a constant which we choose satisfying m > 1/v, we divide the interval [0, 1] into two
subintervals [0,1 — o] and [1 — o, 1] and we define

Lpcn ={z0,71,.. ., 23na=1—0,..., 2N}, (1.6)
with
4(1-o0) 3
o ] aN i=0,...,2N,
L . 3N\40 = 4
1_U+(Z_T>W7 Z:le—l—l,...,N,

(and analogously we can proceed for I, . p).
Using the notation [-];, for the restriction of a function defined in [0, 1] x [0,1] to (2. ;, we will
compute the totally discrete approximations uj to [u(t,)]s by

uf) = [uoln, (1.7a)
1/2
(I + AtL;t,e,h)UZ+ / = uz + At [fl(xv Y, tn+l)] o Y € Iy,e,h’

(1.7b)
w20, y) = w2 (1,y) = 0,
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(I +BtLyp)ul ™ = w2 f At o2,y tnsd)] e @ € Locns
”Jrl(a: 0) = uz+1(1:, 1) =0,

where L, . 5, (and analogously L, . 1) is the discretization of the differential operator L, . (L,.) using
the simple upwind finite difference scheme.

Finally, we want emphasize that each time step of (1.7) requires only the resolution of a set of
uncoupled tridiagona systems. Consequently, a low computational cost is needed by resolving with
this algorithm. Furthermore, an easy and efficient implementation for parallel computation is possible.

Henceforth, we denote by C' any positive constant that is independent of parameters ¢, At and N.

(1.7¢)

2. Convergence analysis

We shall study firstly the convergence of the semidiscretization in time process (1.4).
Since the operators (I + AtL; ), i = z,y, satisfy a maximum principle, it is not difficult to deduce
1
I+NMtL; )t 2.1
It Dl S Tigor kAt @1
withi=x,j=1ori=y,j=2andk; = ming, ., eo kj = 0, j = 1,2. This ensures the stability of
scheme (1.4) (for more details see [2]). In order to analyze the convergence, we introduce the local
error e, 1 defined by
Ent+l1 = u(thrl) - anJrl’
where 7"+ is the approximation to w(t, 1) given after a time step by (1.4), taking u(t,) as the
starting value v, i.e.,
u" = u(ty), (2.28)

(I + DLy 2)a™ Y2 = u" + At f(tn 1),

(2.2b)
w20, y) = w2 (1,y) = 0,
(I +AtLyz)a™ " =" 2 + At fo(tns), 220
.2C
u" Yz, 0) = " Y(z,1) = 0.
The following consistency result is obtained:
Lemma 2.1. Let us assume that
ou 0“u 0
{ 2 atz}cC(Qx[OT]) 23
and that they are bounded independently of ¢, i.e.,
'ﬁu:r y, )| <C, (v,y,t) € 2x[0,T], i <2 (2.4)

Then, the local error satisfies
Hen-‘rlHoo < C(At)z' (25)
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In Appendix A we show briefly that it is possible to obtain (2.4) e-independently if data are e-in-
dependently smooth and compatible.

Combining (2.5) with the stability result (2.1), it is not difficult to show the following convergence
result.

Theorem 2.2. Under assumptions of Lemma 2.1, we have

sup Hu(tn) — u”HOO < CAt. (2.6)
n<T/(Bt)

For more details of the proofs of Lemma 2.1 and Theorem 2.2, see [1,2].

We study now the approximation properties of the spatial discretization process. To do that, we
shall compare z"*1 and a,g“, the solutions obtained after a complete time step from (1.4) taking
u"™ = u(ty), and from (1.7) taking uj = [u(t,)]n, respectively.

Since the discrete operators (I 4+ AtL; . 1), i = x,y, satisfy a maximum principle, we have

H(I + AtLi,é,h)i:LHOO < 17 L= x,y, (27)
and therefore the total discretization is uniformly stable. Thus, we can prove the following theorem.
Theorem 2.3. Let usassumethat 2" 11/2 and 2"+ have the asymptotic behavior given by (3.2)~(3.4).
Then, if we take N~ < CAt with 0 < g < 1, we have

|[@"+], —apth|, < CAtNTtlogN. (2.8)

The proof of this theorem consists of combining, in standard way, the stability result (2.1) and the
uniform convergence results of Section 3 (see aso [3]).

Finally, in order to prove the uniform convergence of the totally discrete scheme we split the global
error in the form

], — il < )], — 7l + 70—~ [ ]

Combining the results of Lemma 2.1, Theorem 2.2 and (2.1), we obtain the following result (see [3]).

Theorem 2.4. Let u be the solution of (1.1) and {u}'},, the solution of (1.7). Under the hypotheses of
Lemma 2.1 and Theorem 2.2, there exists a constant C such that

| [u(tn)], — up|| . < C(At+N"tlogN), (2.9)
with 0 < ¢ < 1.

3. Analysis of spatial discretization

In this section we study the approximation properties of the space discretization of the time semidis-
crete problems (2.2). We only show the convergence of the numerical solution of problem

~n—+1/2
(I +BtLy ) ™% = [u(z,y,ta)], + D[ fa(@, Y, tas1)],s ¥ € Tyen,

art20,y) = a4 (1,y) = 0,
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to the exact solution of (2.2b), and similarly we can proceed for (2.2c).
Since the singular perturbation problems (2.2b) are essentially one-dimensional, they can be written
in the form

(I +DtLy)w = —ebtw” (x) 4+ vi(z, y)Atw' (z) + (1 + Dtki(x,y))w(x)
=u(x,y,t,) + Dt fr(x,y,thr1), O<ax <1, (3.19)
w(0) =0, w(1) =0, (3.1b)
where y is a parameter (0 < y < 1), w(z) = a"*Y?(z,y), vi(z,y) >0 > 0, kx(z,y) > 0and vy, ka,

f1 are sufficiently smooth in 2. In the remainder of this section we will suppose (see Appendix A for
justification) that w = w(x, ) satisfies

w(z,e) = wi(x,e) + z(x, €), (3.2
where

wi(w,¢) = c,e WA/ e < 0 (3.3)
and

|20 (z,6)| < C(1+ e e ™@2/%) 0<i< 4 (34)

To solve numerically (3.1) we consider the upwind difference scheme on the mesh I, . ;, defined by
(1.5), (1.6), which is piecewise uniform with %N+1 pointsin [0,1— o] and %N+l pointsin [1—o,1],
and which is uniform if o = . Let us denote

~ h: h.
hj::rj—xj_l, jZl,...,N, hj:%, jIl,...,N—l,
h,
H:maxhj and pj:?? 7=1...,N.
J
It holds
41-o0) 3
1,.... 5N
ho— 3N ) ’ » 44V
7 4o .3
F, JzzN+l,,N
On this mesh the scheme is defined by
(I +DtLy e p)Wy =1y Wi_a+15Wj + erjH =fj, j=1...,N—-1, (3.5)
Wo =0, Wn =0, (3.6)
with
—elt At —elt
T RN W (37)
hjhj hj hj+1hj
v1,j = v1(x,y), k1j = ki(xj,y), fi = (s, y,tn) + DL f1(z), Y, tnya)- (3.8)

In order to prove the uniform convergence of the method, we begin by studying its consistency.
The local truncation error at an internal point of the mesh is introduced in standard way by

7j = +0tLy.p) (w(z))) — (I +OtLyw)(zj), j=1,...,N—1
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We shall make use of Taylor expansions of functions g(x) in a point a, with the following well-known
expressions for the remainder:

n+1
_ iy @ = @)
Ry(a,z,9) = g"" (o) o CSesT (3.9)
and
1 f n  (n+1)
Rn(a?x7g) = H (l’ - 3) g (S) ds. (310)

a

We shall also suppose that o = melog N (in case o = ;11, h is small with respect to ¢ and 7; can be
bounded in a classical way). Under this assumption, the mesh is not uniform and we study separately
three cases depending on the localization of the point x; in the mesh.

Case 1. 0 < z; < 1— 0. Using Taylor expansions, it is straightforward that the local error is given

by

h;j _
T = —%At vy jw” (x) + 17 Ro(aj, w51, w) + rij(:rj,xjH,w). (3.12)
We distinguish two possibilities to find appropriate estimates of this error, depending on the value
of Pij-

(i) If p; < 1, using (3.2«3.4) to estimate the derivatives of w, the expression (3.9) for the
remainder and the values of the coefficients i r;F, it is easy to obtain
|7j| < COth;(1+ e 2 "Awi)/e). (3.12)

(i) If p; > 1, we use the decomposition (3.2) denoting by le and sz the local errors corresponding
to the functions z(x,¢) and wi(x,¢), respectively. Using the estimates (3.4) and the integral
form of the remainder (3.10), we deduce

thtvl,j W

> (z)| < CAth;(1+ s_le_i(l—wj)/a),

Ty

h _
}T;Rz(xj, i1, z)‘ < CAtE—’—;Z# / (xj—l _ 8)2(1 + E—Ze—v(l—s)/s)ds
J e
< CAthj (hj + Eflefﬁ(lij)/s)'

Likewise,

|7 Ra(j, 241, 2)| < CDth; + CAte™ w0/,
Hence, using the three preceding estimates, we obtain

|7} < CAthy (1+ e te "mm)/e)  onte /e,

To bound ]sz\, we proceed in a different way, since the function w1 (z, ) is known and we can
calculate 72 exactly. Then,
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72 = wy(zj,€) ry (e—vl(l,y)hj/6 ~-1) + r; (e gui(Ly)hjy1/e _ 1)

J
L AL y) (L y) —vy)

- ) (3.13)
and using (3.7), it is easy to prove that
77| < OAt T=z10)/e 4 Opte~tevAm)/E,
Finaly,
7| < || + |77| < COthy + Citete ~o(1-x;)/e %e—a(lﬂ;ﬁl)/s
J
=CANAthj + %hj_,'_lg1e5hj+1/5e5(1xj+1)/5 + Ch_?tei(lxﬂl)/g
< CAth; + Oh—?te—i(l—l‘jﬂ)/a, (3.14)

since h; = hj;1 and

h.: —
];1 efvhj-&-l/s < C

Case2.1—-0 < z; < 1. Inthis case the study of 7; is straightforward. Using the expression (3.11)
for the local error, the estimates for the exact solution given in (3.2)—«3.4) and (3.9) for the remainder
of the Taylor expansions, we obtain

|75 < COthy(1+ e 2 Pd-w)/e). (3.15)
Case 3. z; = 1 — 0. Here, we shall distinguish again two possibilities depending on the value of

Pj-
(i) If p; < 1, similar arguments to those used in Case 1(i) permit us to prove

I7j] < OAthy(1+ e 27w/, (3.16)
(if) If p; > 1, we write the local error in the form
T =r; Rz, xj1,w) + rle(:rj, Tit1,w) + Dtew” ()

and we denote by 73, 77 the same parts of error as in Case 1(ii).
Using the estimates given by (3.4), the remainder of the Taylor expansion in the form (3.10) and
the expressions (3.7) for the coefficients, we have

}Atsz”(xj)‘ < CAte(l + 5*1675(1*"53')/5) < CAth; + CAte 7(-w)/e,

J
|7 Ra(j, 21, 2)| <0At5++;’jhj / (@1 — )| (1+ 16 T0-/2) s
J
Tj—1

< CAth; + Cite " -#3)/e,
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and
Tjt+1
< —1,-9(1-s
|} R, 2541, 2)| < Chtos / (zj11— 5)|(1+ e e )/5) ds
J Py
< CAth; + Cipe "/,
From the three preceding estimates, we obtain
|7} < CDthy + CAte"m+1)/z,

To bound 77, we use (3.13) obtaining

. . CAt
ry (eI — 1) o (N — 1) <
and
Atvl(l, y)(v1(1,y) —v1y) < Chto < C’At'
g € h]

In the last inequality we have taken into account that 7; = 4(1 — 0)/(3N), 0 = melogN and
4(1—o0)logN < CN. Therefore,

77| < %e—m—m/g
j

Finally, from the last estimates for |r}| and | 72|, we deduce that

At . At
|7j| < CAth; + %e—”“—%)/a + CAte " m)/E < OAth; + %e—vﬂ—xm)/e. (3.17)
J J

Let us remark that we have just found estimates for the local error that are not uniform in . To
obtain an uniform convergence result we shall instead use the barrier function technique (see Kellogg
and Tsan [12]). Thus, let us define

1 Bhi

¢,:1+ E ds,ﬁ: ) Zﬁ:l+ )
Lj Lj 2,i(5) Hi]\ij+1ui(ﬁ) 1i(B) B

with § a constant to be fixed later. Applying the finite difference operator to the barrier functions, we
have the following estimates:

(I+ Ath,s,h) (@Lj(ﬁ)) =1+ Atij)(l + xj) + vy jAt > At > 0,
(I +DtLy e p)(D25(8)) = 75 P2j-1(8) + ri®2;(B) + 1] 2j11(5) (3.18)
1
> 924(8) [7"]_ (m - 1) +r7 (uja(8) = 1) |.

Simple calculations render

BOt viih; — Bh;
71 j €+ ﬁhj '
For a deeper study of these estimates, we shall distinguish the same cases as in the previous study of
the local error.

(I 4+ DtLyep)(D25(8) = P25(6) (3.19)
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Case 1. Note that hj = hj,1 = h;. Using (3.19), we obtain

C(B)At
. P P . .
(I+Ath,e,h) (dsZ,] (ﬂ)) = max{e,hj}g)z’j (ﬁ)v (3 20)
with g < 7. B

Case 2. Again, h; = hj;1 = h; and using (3.19) we deduce (3.20), if condition 5 < 7 is satis-
fied.

Case 3. Now using (3.19) we have

(I + DLy o) (B2(8)) > Boy(3) 200 (Wi = 20)hy o C(B)A

2(c + Bh;) ~ max{e, hj}¢2,j(ﬂ), (3.22)

h;
where the last inequality holds only if 3 < ©/2. Hence, under condition 3 < 7/2, in al cases we have
proved that

CAt

(I +DtLy e ) (D25(8)) > max(e, ]

D2 ;(). (3.22)

In order to combine the estimates obtained for the local truncation error with the estimates for the
barrier functions, to prove the uniform convergence of the simple upwind scheme, we will use the
following technical result.

Lemma 3.1. For all g > 0 we have:

() 2;(8) > e /-wlle, (3.23)
(@ii) If h; <efori>j+ 1then
1 C
N < N 5]1./6’
[Tis )1 1i(B) Hi:jJrlez !
Theorem 3.2. Let w(x,¢) be the exact solution of problem (3.1) and {I¥;} the numerical solution
of upwind scheme (3.5)—<3.8) defined on the special mesh I, . ; given by (1.5), (1.6). Then, if we

choose m > 1/v and 8 = v/2, there exists a positive constant C' independent of y, £ and N, such
that

(3.24)

lw(xj,e) — W;| < CN~tlogN.

Proof. Let usdenoteby e; = w(z;, ) — W), the global error in z;. To bound |e;|, we shall distinguish
two cases. If p; < 1, we take

h.
Ki(hj,e) = Chj,  Kp(hj,e) :o?’,

Then, using the estimates (3.12) and (3.15)—3.17) for the local error, the estimates given in (3.21)
and Lemma 3.1, we deduce

(I 4+ DtLy . 1) (K191(8) + K2P2,5(3)) = |75l
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and using the discrete maximum principle for the operator (I + AtL, . ;) and the condition fm > 1
we obtain

lej| < Ch; +chj¢2](5) < CN7tlogN.
If p; > 1, taking
Ki(hj,e) = Ch;,  Ka(hj,e) = Cuja(B),
we deduce again
(I +DtLy . p)(K191,;(8) + K2P25(3)) > |71,

so, the maximum principle permit us to prove

C -
lej1 < Chj + §zm SCNTL O

Note that under the same hypotheses of Theorem 2.4, if we impose N4 < CAt, with 0 < ¢ < 1,
we abtain
lw(xj,€) — W;| < CAN "+ 7log N,
which is the required result in Section 2.

4. Numerical results

In this section we show some numerical results obtained in the integration of two problems of type
(1.2). In both cases we use a constant time step and special meshes in the spatial variables. We have
first considered an example with known exact solution in order to compute exactly the pointwise errors

eéV,At(i’j’n) = ‘us(xivijtn) - UN(xi’yjatn)}a

where the superscript N indicates the number of mesh points used in the x- and y-directions, and At
the stepsize in time. For each e the maximum nodal error is given by

E:nat = maxeNAt(Z J,n)

and, for each NV and At, the e-uniform maximum nodal error is defined by
Enae = max E: Nt

Computed values of E. ya; and En a; for this problem are given in Table 1 for various values of ¢
N and At.

A second example whose exact solution is not known is also considered. In this case, the pointwise
error &% (i, j,n) is estimated by €2 (i, j,n) = [@(xs, yj, tn) — u® (23, yj, tn)] Where w(a;, y;, tn)
denote the numerical solution obtained by the method using a special mesh with N = 256 points in
each spatial direction and At = 0.003125. Then, in a similar way as before, we define £ , ,, and
E% 5~ Note that the meshes are not uniform, thus we use a bilinear interpolation to obtain @ on the
coarse mesh.



222 C. Clavero et al. / Applied Numerical Mathematics 27 (1998) 211231

To obtain a numerical e-uniform rate of convergence, we proceed in a similar way to the double-
mesh principle (see, e.g., Hegarty et a. [8]), but doubling the number of points in the mesh instead
of half the mesh size. Then, the numerical order of convergence is given by

_ log(E: nat/E:2n ) No9(EZ yai/ EZ onae)
p= or p=
log2 log2
if the exact solution is known or unknown, respectively. We recall that a numerica method for

solving (1.1) is said to have an e-uniform rate of convergence of order p on the sequence of meshes
{02n}19° x {tn}OT if there exist Ny and Atg, independent of ¢, such that for all N > Ny and At < Atg

—u® < O(At+ N1y
Ogstl:,ZT(Oijgluu “ HQN»tn) (&t + )

)

(lwll ey tn = MX(4, 4 )eay [W(Tiyj,tn)]), Where u is the solution of (1.1), u is the numerical
approximation to » and C' and p > 0 are independent of ¢, At and N.
In the numerical examples below, we choose the following decomposition of the function f:

fl(x7y7t) = f(x7y?t) - fz(x7y?t)7

4.1
falw,y.t) = f(2,0,8) +y(f(z,1,t) = f(,0,1)).
With this special decomposition, the hypothesis
£(0,0,t) = f(0,1,¢t) = f(1,0,¢t) = f(1,1,t) =0 4.2
clearly gives
fi(2,0,t) = fi(2,1,6) =0, f2(0,,t) = f2(L,y,t) =O. (4.3)

This property is needed for us to prove the asymptotic behavior of exact solution of problem (1.1)
and semidiscrete problems (3.1) (see Appendix A).

The mesh refinement strategy that we have used for our numerical experiments, fails to satisfy
the hypothesis N7 < CAt at the limit. However, the obtained results show a reduction of the error
which gives the convergence of the method. Therefore, this hypothesis seems to be unnecessary for
convergence or order given in Theorem 2.4. On the other hand, the influence of ¢ in the estimated
order of convergence would not exist if the hypothesis reveals unnecessary. Anyway, the presence of
log N makes it difficult to appreciate if there is an actual reduction from N~1log N to N~1t9log N.
This difficulty would appear even if we take the care of making all meshes satisfying the restriction
above.

We want also remark that, from both theoretical and numerical points of view, the choice of de-
composition & = k1 + k2 (k; smooth and positive) only affects to the error constant C' of the global
error.

The numerical simulations have been performed on a DEC 3000 Model 500/S with OpenVMS.

Example 1.
w — ebu + (14 2)uy + (2 — y)uy + (a:z + 2+ Du=f, (z,yt)€Nx(0,2],
u(z,y,t) =0 in0£2 x (0,2,
u(z,y,0) =0, (x,y) € 12,
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Table 1
Maximum nodal errors E- na: and En a: for Example 1
€ N =28 N =16 N =32 N =64 N =128 N =256
At =0.1 At =0.05 At = 0.025 At = 0.0125 At = 0.00625 At = 0.003125
1 7.921E-3 4.803E—3 2.678E—3 1.418E-3 7.306E—4 3.709E—4
1071 1.252E-1 9.826E—2 6.117E—2 3.434E-2 1.835E—2 9.501E—3
1072 2317E-1 1.794E-1 1.251E—-1 8.124E-2 5.072E—-2 3.014E-2
0% 2.506E—1 1.986E—1 1.430E—-1 9.340E—-2 5.760E—2 3.395E-2
107*  2526E-1 2.008E-1 1.455E—1 9.549E-2 5.915E-2 3.508E-2
107°  2528E-1 2.011E-1 1.457E—-1 9.574E-2 5.933E-2 3.523E-2
107  2528E—-1 2.011E-1 1.457E—-1 9.574E-2 5.935E—-2 3.524E-2
1077 2528E-1 2.011E-1 1.457E—-1 9.574E-2 5.935E—2 3.524E-2
Enat 0.2528 0.2011 0.1457 0.0957 0.0593 0.0352
Table 2
Numerical order of convergence for Example 1
€ N =28 N =16 N =32 N =64 N =128
1 0.721 0.842 0.917 0.956 0.988
1071 0.349 0.683 0.832 0.904 0.949
102 0.369 0.520 0.622 0.679 0.750
1073 0.335 0.473 0.614 0.697 0.762
10~* 0.331 0.464 0.607 0.690 0.753
10°° 0.330 0.464 0.605 0.690 0.752
10°° 0.330 0.464 0.607 0.689 0.752
1077 0.330 0.464 0.607 0.689 0.752
Min. 0.330 0.464 0.605 0.679 0.750

where f is such that the exact solution is given by
u€(x7 y?t) = eitxy(h‘l(x) - 1) (hz(y) - 1)7
with
ha(C) = e(f372<f<2)/(26), ha(¢) = e (3-4¢+¢?)/(2e)

Example 2.
up — elu + (1— %)uw + <l+ x_2y>uy = f(z,y), (z,y,t) € 2x(0,2],
u(z,y,t) =0 in0£2 x (0,2,

u(z,y,0) =0, (x,y) € 12,
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Table 3
Maximum nodal errors £ y o, and E7 a, for Example 2
€ N=8 N =16 N=32 N =64 N =128
At =01 At =0.05 At = 0.025 At = 0.0125 At = 0.00625
1 1.010E—2 5.945E—3 3.123E-3 1.423E-3 4.896E—4
272 2.544E—2 1.400E—2 6.949E—3 3.073E-3 1.041E-3
24 7.254E—2 4.364E—2 2.489E—2 1.248E—2 4.380E—3
2°° 1.138E—1 7.465E—2 4.225E—2 2.058E—2 7.491E—3
28 1.284E—1 8.256E—2 4,944E—2 2.812E—2 1.121E-2
210 1.326E—1 8.578E—2 4,885E—2 2.529E—2 1.255E—2
212 1.337E—-1 8.687E—2 4,958E—2 2.460E—2 9.732E-3
2~ 1.340E—1 8.715E—2 4.977E—2 2.471E—2 9.202E—3
271 1.341E—1 8.722E—2 4.981E—2 2.4T4E—2 9.213E—3
218 1.341E-1 8.724E—2 4,982E—2 2.47T4E—2 9.215E—3
27 1.341E-1 8.724E—2 4,983E—2 2.475E—2 9.216E—3
EN at- 0.13416 0.08724 0.04983 0.02812 0.01121
Table 4
Numerical order of convergence for Example 2
€ N=8 N =16 N=32 N =64
1 0.766 0.929 1.134 1.539
272 0.861 1.011 1.177 1.561
24 0.733 0.810 0.996 1.511
26 0.609 0.821 1.038 1.458
28 0.637 0.740 0.814 1.326
210 0.629 0.812 0.950 1.010
22 0.623 0.809 1.011 1.338
2~ 0.621 0.808 1.010 1.425
271 0.621 0.808 1.010 1.425
218 0.621 0.808 1.010 1.425
27 0.621 0.808 1.010 1.425
Min 0.609 0.740 0.814 1.010
where

f(z,y) =sin(rz(1—2))sin(ry(1—y)).
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Appendix A

In this appendix we expose the outlines to obtain the bounds for the solutions and their derivatives
of problems (1.1) and (2.2), which are necessary for the uniform convergence analysis carried out in
the previous sections.

Starting with problem (1.1) we will denote D = 2 x [0,T], S = 042 x [0, T, and we will suppose
enough smoothness of functions @, &, f, uo and also enough compatibility conditions (see[13, p. 206;
15, pp. 319-320]) between initia and boundary data, in such way that for [ sufficiently large and a
not integer «, the solution of (1.1) satisfies

u(z,y,t) € CHO"HO"(HQ)/Z(E x [0,77).
Among these compatibility conditions we will remark the following one:

f(0,0,t) = f(0,1,¢t) = f(1,0,¢t) = f(1,1,¢t) =0, Vte[0,T]. (A.2)
This condition is required for the asymptotic study which we carry out on the semidiscrete in time
solutions. It was shown in [20,21] that the solution of problem (1.1) can be decomposed in two addenda

u=U+V,where U and V are the regular and singular parts of u, respectively, which are defined
as solutions of the following problems. On the one hand, V' is the solution of

aa—‘;—eAv+?€’V+kvzo in D,
V(z,y,0) =0 in 2,
Vi(x,y,t) = =U(x,y,t) inS.
On the other hand, U is the restriction to D of the solution of
agt'* AU+ T VU KU = £ inDF = 0 x [0,T),
U*(z,y,0) = ug in 2%,
U*(z,y,t) = g"(x,y,t) in S*=00" x[0,7],

where £2* is a smooth extension of 2, T, k*, f* are smooth extensions of ¥, k, f to D*, ug
is an extension of ug to 2* and ¢* is a smooth and compatible function. Since we have supposed
U = (v1,v2) With v;(x,y) > © > 0, i = 1,2, the singular part V' can be decomposed in the form
V =Vi+ Vo + V1, where V4 and V> are one-dimensional boundary layers in neighborhoods of sides
r=1andy =1 of (2, respectively, and V1 is a corner layer on neighborhood of (1, 1).

Function V3 (and analogously 1) can be obtained as a restriction to D of the solution of

a‘afi AV 4+ TV VR BTV =0 in D = 2% x [0, 7],
Vi*(z,y,0) =0 ne

Vit (z,y,t) = —U** in 9025 x [0, 77,
Vi*(z,y,t) =0 oz x (0.1]

where 2** is a smooth extension of (2 near the vertex (1,1) (see Fig. A.1), 92;* is an extension of
the boundary side = = 1 beyond the point (1,1) and 0425* = 042**\042;*, and also U** is a smooth
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v

r
Q**

Fig. A.1.

and compatible extension of U(1,y,t) to 042;*, as well as 7**, k** are smooth extensions of ©’, k
to D**. -
The function V4 is the solution of

%—Evl—l—vvvl—kkvl—o inD,
Vi(x,y,0) =0 in (2,
Vl(l',y,t):_(U—f'Vl—l—%) inS.

According to the results of [20,21], the following bounds are obtained:

ks TR (2,y,t)
Oxkz gk Otk

ak'§+kt V]_(l’, Y, t)
Oxka Qg dtht

ot V(2 y, t)
OxkzQykv otk

ok RV (z,y,1) ks o(1-x) 7(1-y)
30y kv otk ' < Ce mm{exp(— 6 ),exp(— 5 ) },
where ks = ky + ky, ks + 2k <l and (z,y,t) € 2 x [0,T7].
Now we study the behavior, with respect to the singular perturbation parameter ¢, of the solutions of
(2.2b) and their derivatives. An analogous development can be carried out for (2.2¢). In fact, we will
have to prove bounds (-dependent) for @"*+%?(z, ) (respectively u"(z,v)), solutions of (2.2b)

(respectively (2.2¢)), and their z-derivatives (respectively y-derivatives) up to order 3.
As a previous technical requirement, we will assume that

)

< Ce ke exp(—ﬁ(l; x)),

< Og_ky exp<_M> ,

9

| Ly culz,y,t, ;’i B2 (gt ;’j : A2)

L, cu(z,y,ty C, L cu(m,y, ty C.
Y,
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In the case v1 = v1(x), v2 = v2(y), k1 = ka(x), k2 = k2(y), these assumptions can be immediately
proved by the fact that functions V' = L,.u and W = L, .V are the respective solutions of the
initial-boundary value parabolic problems

aa—‘t/—eAv+7?V+kszx,€f in 2 x [0,7],
V(z,y,0) = Ly cuo(z,y) in £,
V(0,y,t) = f(0,y,t), V(L,y,t) = f(Ly,t) in[0,1] x[0,T],
V(x,0,t) = V(z,1,t) =0 in [0,1] x [0, 77,

and
aa—vf—sAW+??W+kW:L§£f in 2 x[0,7],
W(z,y,0) = L.V (x,y,0) in 2,
W(0,y,t) = Ly f(0,y,t) — (%(O,y,t) + Ly,gf(O,y,t)> in [0,1] x [0, 77,
W(L5t) = Loef @) = (55 000) + Lyl (L)) in[0.2]x 0.7],
W(z,0,t) = W(x,1,t) =0 in [0,1] x [0, 7.

A maximum principle for these problems together with suitable smoothness and compatibility condi-
tions for up and f give the desired bounds for V' and 1. Analogously we can prove the same bounds
for L., L2 _.

For generd vi(x,y), va(x,y), ki(z,y) and ka(x,y), condition (A.2) is aso true but not so easy to
prove. In [21] it is shown that the corner layer V1 can be expanded in the form V1 = VO + V1 43,
where 71 is the remainder term. Then, for V1, V, and 71 it is easy to prove that L, V4, Ligvl, L, Vo,
L2 .V, Ly 1 and L2 v are bounded independently of e (similarly for L, ). To obtain the same
bounds for V9 and V* we use analytical formulae, so we can deduce (A.2).

Note that |z"+1/2| < C by (2.1). In order to obtain bounds for its z-derivatives we will firstly take
into account that
anti/2 _ u(tn)

At
is the solution of

(I + AtL;t,a)(S = _Lac,su(-ra Y, tn) + fl(-rv Y, tn+1)a
6(0,y) = 6(L,y) =0,

(A.3)

where we have | L, .u(z,y,t,)| < C in §2 from the previous assumptions for the exact solution of the
continuous problem. From (2.1), we obtain |6| < C.
Now, 2"%2 can be given as the solution to

L:p,san—i—l/z =0+ fl(l” Y, thrl)’

(A.4)
amt2(0,y) = amt2(1,y) = 0,
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and proceeding in a similar way as in [12] we prove that

ai/\n-I—l/Z

uaii(oay) <G, 0<i<1,
xr

dignti/2 '

uaii(lay) <Ce™, 0<i<2,
xr

and
duntl/2 r (1 —
——|< |14t exp<_w):|' "5

To obtain bounds for higher order z-derivatives of a"%/2, we differentiate (A.4) with respect to
and obtain

du(w,y, tn)/dz —du"™2/0x  dfs  dui a2 k1,10
— Lot Mgn A6
Laes(@,y) At Yo or  on ow (A.6)

where s(z,y) = 0u"*1/2/9x. By the same reasoning as we followed for (A.5), we can obtain
92 n+1/2

- < C{l-I—E_ZeXp(—E(l; w))]

To do this we simply need to prove that

du(x,y,t,)/0x — 0u"+12/ox <C [1 Lt exp(—ﬁ(l — x))] ' A7)
At €
Let § = L, .6, which satisfies
(I +AtL, 5>5 (Y, tn) + Lae fi(@,y, tata),
5(0,y) ( (0, n+1) Ly cu(0,y,ty)), (A.8)

5(17 y) = A_t (fl(lv Y, tn+1) - L$76u(lv Y, tn)) :

The required compatibility conditions and the decomposition for f givenin (4.1), !Liw(ﬁc,y,tn)! <C,
Ly cu(0,y,tn) = f(0,y,t,) = f1(0,y,tn) and Ly cu(l,y,tn) = f(Ly,tn) = f1(1,y,tn). Therefore
|6] < C'in {2. Then, in the problem

L;B,a(S:S? 6(07y) = 6(17y) = 07

we apply the Kellogg and Tsan technique [12] and it follows readily that

% C[He—lexp(—ﬁ(l‘ ”>>] Y(r,y) € T,
ox €

and hence (A.7).

To obtain the corresponding bound for the third derivative we use a similar idea, differentiating
(A.5), constructing a problem like (A.8) for Liaw and taking into account (4.1) and the compatibility
conditions.
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Finally, the proof of (3.2)—(3.4) is finished in the following way. Let

B _vl(l,y)(l —x) B e ountl/2

wl(fL’,y) - exp( c ) Cy = Ul(l, y) dr (1) y)v

and z(z,y) = u"*Y2 — c,wy. Then, it holds that
0z 0z

}Z(O’y)} gc) ‘Z(lvy)‘ gov %(O)y)' gc) %(1’9): )

and
~n+1/2 owq _

Lyez=—6+ f1— kiU + ¢y (v1(L,y) — va(z,y)) 5, TR =9@y), (A9

being ¢ is a bounded function.
Differentiating (A.9) with respect to = we obtain
0z 0g(x,y) Ov10z 0k
Lyamm=—"7"""%—————z= ,Y). A.10
" ox ox oxr 0x  Ox Z=q(@y) ( )
Notice that
ox €

implies

g1z, )| < C [l+ g1 exp(—ﬁ(lf_x))] .

Also the boundary conditions for 9z/0x are uniformly bounded. Then it follows that

<C [(1+ gl exp(—@)] .1

The proof of a bound similar to (A.11) for : = 3 consists of differentiating (A.10) with respect to =,
taking the corresponding boundary conditions which satisfy the bounds

oxt oxt
and using again the same technique.
The bounds for the y-derivatives of %" 11/2 are obtained by y-differentiating the differential equation

in (2.2b), considering the available boundsfor the corresponding right hand side terms and also noticing
the corresponding boundary conditions are null.

0tz
oxt

N

i<2 (A.11)

(O,y)’ <G,

(1,y)’ <Ce
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