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Abstract

A Dirichlet boundary value problem for a linear parabolic differential equation
is studied on a rectangular domain in the x− t plane. The coefficient of the second
order space derivative is a small singular perturbation parameter, which gives rise
to parabolic boundary layers on the two lateral sides of the rectangle. It is proved
that a numerical method, comprising a standard finite difference operator (centred
in space, implicit in time) on a fitted piecewise uniform mesh of Nx × Nt elements
condensing in the boundary layers, is uniform with respect to the small parameter,
in the sense that its numerical solutions converge in the maximum norm to the exact
solution uniformly well for all values of the parameter in the semi-open interval (0,1].
More specifically, it is shown that the errors are bounded in the maximum norm
by C((N−1

x lnNx)
2 + N−1

t ), where C is a constant independent not only of Nx and
Nt but also of the small parameter. Numerical results are presented, which validate
numerically this theoretical result and show that a numerical method consisting of
the same finite difference operator on a uniform mesh of Nx × Nt elements is not
uniform with respect to the small parameter.

1. Introduction

Boundary layers occur in the solution of singularly perturbed problems when
the singular perturbation parameter, which multiplies terms involving the highest
derivatives in the differential equation, tends to zero. These boundary layers are
neighbourhoods of the boundary of the domain, where the solution has a very steep
gradient. Away from any corner of the domain a boundary layer of either regular
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or parabolic type may occur. A boundary layer is said to be of parabolic type if
the characteristics of the reduced equation, corresponding to ε = 0, are parallel to
the boundary, and of regular type if these characteristics are not parallel to the
boundary. A boundary layer near a corner is said to be of corner type.

Due to the presence of the steep gradients numerical methods using standard
finite difference operators on uniform meshes are not adequate for solving problems
with boundary layers. Furthermore, it is important that the convergence analysis is
in the maximum norm rather than an averaged norm, in order that the singular
components of the solution are detected. These considerations lead to the concept of
an ε-uniform method, which is a numerical method for solving a singularly perturbed
problem having an error estimate in the maximum norm that is independent of the
size of the singular perturbation parameter ε.

When regular boundary layers are present it is often possible to obtain an ε-
uniform method by constructing an appropriately fitted finite difference operator
on a uniform mesh. However, this approach is not possible if a parabolic boundary
layer is present. This negative result was first proved in Shishkin [3] (see also Miller
et al. [2] for a more detailed proof). The main goal of the present paper is to prove
in detail the positive result that for linear parabolic problems having parabolic
boundary layers, an ε-uniform method can be constructed using a standard finite
difference operator on an appropriately-fitted piecewise uniform mesh condensing
in the boundary layers.

A description of the contents of the paper follows. The problem is formulated in
§2 after the appropriate Hölder spaces are introduced. The corresponding reduced
problem is defined and the parabolic boundary layers are described. The maximum
principle for the differential operator is discussed and it is shown that this leads
immediately to its ε-uniform stability. Sufficient compatibility conditions on the
initial and boundary data to guarantee the existence, uniqueness and appropriate
regularity of the solutions to the problem are then presented. In §3 both classical
and new sharper ε-uniform bounds in the maximum norm on the derivatives of the
solution are discussed. The latter are obtained by means of a new decomposition of
the solution, which leads to a deceptively simple proof of the required results. The
fitted mesh finite difference method is constructed in §4 and a detailed proof that it
is an ε-uniform method is given in §5. In §6 numerical results are reported, which
validate the results predicted by the theory, and in fact show that the numerical
methods work equally well in practice for a much broader class of problems than
the theory predicts. It is also shown that a classical numerical method on a uniform
mesh is not ε-uniform for the problem under consideration.

The main theoretical result of this paper, presented in §5, was first stated by one
of the authors in [3], which contains only a brief outline of the main points of the
proof, and is therefore quite difficult to understand.

The paper ends with §7 which summarizes the main conclusions.

2. Formulation of the problem

To discuss the regularity of the solutions to the time-dependent problems con-
sidered here some spaces of functions, Hölder continuous in both x and t, are
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introduced. To be precise, let Ω ⊂ R and let D be a convex domain in Ω × [0, T ].
Suppose that λ ∈ R satisfies 0 < λ ≤ 1. Then a function u is said to be Hölder
continuous in D of degree λ if, for all (x, t), (x′, t′) ∈ D,

|u(x, t)− u(x′, t′)| ≤ C(|x− x′|2 + |t− t′|)λ/2.
Note the difference in the metrics used for the space and time variables. The set of
all Hölder continuous functions forms a normed linear vector space C0

λ (D) with the
norm

‖u‖λ,D = ‖u‖D + sup
(x,t),(x′ ,t′)∈D

|u(x, t)− u(x′, t′)|
(|x− x′|2 + |t− t′|)λ/2 ,

where

‖u‖D = sup
(x,t)∈D

|u(x, t)|.

For each integer k ≥ 1 the following subspaces Ck
λ (D) of C0

λ (D), which are functions
having Hölder continuous derivatives, are also introduced

Ck
λ (D) =

{
u:

∂i+ju

∂xi∂tj
∈ C0

λ (D) for all non-negative integers i, j with 0 ≤ i+ 2j ≤ k
}
.

The norm on Ck
λ (D) is taken to be

‖u‖k,λ,D = max
0≤i+2j≤k ‖

∂i+ju

∂xi∂tj
‖λ,D.

Notice again the difference in the treatment of the space and time derivatives. For
u ∈ Ck

λ (D) and 0 ≤ l ≤ k the following semi-norms are also defined:

|u|l,λ,D = max
i+2j=l

‖ ∂
i+ju

∂xi∂tj
‖λ,D.

It is clear from these definitions that

‖u‖k,λ,D = max
0≤l≤k |u|l,λ,D,

where the notational convention ‖u‖0,λ,D = |u|0,λ,D = ‖u‖λ,D is adopted. When the
domain is obvious, or of no particular significance, D is usually omitted.

Let Ω = (0, 1), D = Ω× (0, T ] and Γ = Γl ∪Γb∪Γr , where Γl and Γr are the left
and right sides of the box D and Γb is its base. Notice that Γ comprises the base
and the two sides of the box, while D includes its lid. The notation D = D∪Γ is also
used. The problem considered is the following linear parabolic partial differential
equation in D with Dirichlet boundary conditions on Γ :

(Pε)


Lεuε(x, t) ≡ −ε∂

2uε(x, t)

∂x2
+ b(x, t)uε(x, t) + d(x, t)

∂uε(x, t)

∂t
= f(x, t),

for (x, t) ∈ D, uε = ϕ on Γ ,

where d(x, t) > δ > 0 and b(x, t) ≥ β ≥ 0 in D.
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The reduced problem corresponding to (Pε) is

(P0)

{
bv0 + d

∂v0

∂t
= f in D,

v0 = ϕ on Γb.

It is then clear that the solution of (Pε) has boundary layers on Γl and Γr . The
characteristics of (P0) are the vertical lines x = constant, which implies that any
boundary layers arising in the solution are of parabolic type.

With the above assumptions on the coefficients d and b, Lε satisfies the following
minimum principle.

Minimum Principle. Assume that b, d ∈ C0(D) and let ψ ∈ C2(D) ∩ C0(D). Suppose
that ψ ≥ 0 on Γ . Then Lεψ ≥ 0 in D implies that ψ ≥ 0 in D.

The stability of Lε and an ε-uniform bound for the solution of (Pε) in the
maximum norm is an easy consequence of this.

Theorem 1. Let v be any function in the domain of the differential operator Lε in (Pε).
Then

‖v‖ ≤ (1 + αT ) max{‖Lεv‖, ‖v‖Γ },
and any solution uε of (Pε) has the ε-uniform upper bound

‖uε‖ ≤ (1 + αT ) max{‖f‖, ‖ϕ‖},
where α = maxD{0, (1− b)/d} ≤ 1/δ.

The existence and uniqueness of a solution of (Pε) can be established under
the assumption that the data are Hölder continuous and also satisfy appropriate
compatibility conditions at the two corner points of Γ . The latter conditions are
now described using the notation

ϕ =

 ϕl on Γl
ϕr on Γr
ϕb on Γb

to distinguish the boundary data on the different edges of Γ . Note that ϕl and ϕr are
functions of only t, while ϕb is a function of only x. Then the required compatibility
conditions at the two corners are

ϕb(0) = ϕl(0), ϕb(1) = ϕr(0) (1)

and

−εd
2ϕb(0)

dx2
+ b(0, 0)ϕb(0) + d(0, 0)

dϕl(0)

dt
= f(0, 0),

−εd
2ϕb(1)

dx2
+ b(1, 0)ϕb(1) + d(1, 0)

dϕr(0)

dt
= f(1, 0). (2)



Miller and others—Fitted mesh methods 177

Note that ϕ must be sufficiently smooth for (2) to make sense, namely ϕl ∈
C1(Γl), ϕb ∈ C2(Γb), ϕr ∈ C1(Γr).

In the remainder of this paper it is assumed, without loss of generality, that
problem (Pε) has homogeneous boundary data, that is ϕ = 0. Because the bound-
ary conditions are homogeneous the previous compatibility conditions (1) and (2)
simplify to

f(0, 0) = f(1, 0) = 0. (3)

The following classical theorem gives sufficient conditions for the existence of a
unique solution.

Theorem 2. Assume that ϕ = 0, the data b, d, f ∈ C0
λ (D), and that the compatibility

conditions

f(0, 0) = f(1, 0) = 0

are fulfilled. Then (Pε) has a unique solution uε and uε ∈ C2
λ (D).

3. Bounds on the solution and its derivatives

The error estimate for the fitted mesh finite difference method, which will be
described below, is proved under the assumption that the solution of (Pε) is more
regular than is guaranteed by the result in Theorem 2. To obtain this greater
regularity stronger compatibility conditions are imposed at the two corners of Γ .

The additional compatibility conditions are(
d
∂

∂t
+ ε

∂2

∂x2

)(
f

d

)
(0, 0) = 0 and

(
d
∂

∂t
+ ε

∂2

∂x2

)(
f

d

)
(1, 0) = 0 (4)

Note that these require additional smoothness of f and d. The existence of a smooth
solution for the problem with homogeneous boundary conditions is now established
in the following theorem.

Theorem 3. Assume that ϕ = 0, the data b, d, f ∈ C2
λ (D) and that the compatibility

conditions

f(0, 0) = f(1, 0) = 0

and (
d
∂

∂t
+ ε

∂2

∂x2

)(
f

d

)
(0, 0) =

(
d
∂

∂t
+ ε

∂2

∂x2

)(
f

d

)
(1, 0) = 0

are fulfilled. Then (Pε) has a unique solution uε and uε ∈ C4
λ (D). Furthermore, the

derivatives of the solution uε satisfy, for all non-negative integers i, j, such that 0 ≤
i+ 2j ≤ 4, ∥∥∥∥ ∂i+juε∂xi∂tj

∥∥∥∥
D

≤ Cε−i/2,
where the constant C is independent of ε.
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Proof. The proof of the first part is given in Ladyzhenskaya et al. [1, chap. IV,
p. 320]. The bounds on the derivatives are obtained as follows. Transforming the
variable x to the stretched variable x̃ = x/

√
ε the problem (Pε) is transformed to the

problem

(P̃ε)

 −∂
2ũ

∂x̃2
+ b̃ũ+ d̃

∂ũ

∂t
= f̃ on D̃ε

ũ = 0 on Γ̃ε,

where D̃ε = (0, 1/
√
ε)× (0, T ] and Γ̃ε is its boundary analogous to Γ . The differential

equation in (P̃ε) is independent of ε. Applying the estimate (10.5) from [1, p. 352]
gives, for all non-negative integers i, j such that 0 ≤ i+ 2j ≤ 4, and all Ñδ in D̃ε,∥∥∥∥ ∂i+j ũ∂x̃i∂tj

∥∥∥∥
Ñδ

≤ C(1 + ‖ũ‖Ñ2δ
).

Here the constant C is independent of Ñδ where, for any λ > 0, Ñλ is a neighbour-
hood of diameter λ in D̃ε. Returning to the original variable x it follows that∥∥∥∥ ∂i+juε∂xi∂tj

∥∥∥∥
D

≤ Cε−i/2(1 + ‖uε‖D).

The proof is completed by using the bound on uε in Theorem 1.

The bounds on the derivatives of the solution given in Theorem 3 were derived
from classical results. It turns out, however, that they are not adequate for the
proof of the ε-uniform error estimate. Stronger bounds on these derivatives are now
obtained by a method originally given in [3]. The key step is to decompose the
solution uε into smooth and singular components.

Let uε be the solution of (Pε) and write

uε = vε + wε, (5)

where vε, wε are smooth and singular components of uε defined in the following way.
The smooth component is further decomposed into the sum

vε = v0 + εv1,

where v0, v1 are defined by

bv0 + d
∂v0

∂t
= f in D, v0 = 0 on Γb,

Lεv1 =
∂2v0

∂x2
in D, v1 = 0 on Γ .

It is clear that v0 is the solution of the reduced problem. Furthermore vε satisfies

Lεvε = f in D vε = 0 on Γb and vε = v0 on Γl ∪ Γr.
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With vε thus defined, it follows that wε is determined and that it satisfies

Lεwε = 0 in D wε = 0 on Γb and wε = −v0 on Γl ∪ Γr.
It is also convenient to write

wε = wl + wr,

where wl and wr are defined by

Lεwl = 0 in D, wl = −v0 on Γl, wl = 0 on Γb ∪ Γr,
Lεwr = 0 in D, wr = −v0 on Γr, wr = 0 on Γl ∪ Γb.

It is clear that wl and wr correspond respectively to the boundary layers on Γl
and Γr . The required non-classical bounds on vε and wε, and their derivatives, are
contained in the following theorem.

Theorem 4. Consider the problem (Pε). Assume that the data b, d ∈ C2
λ (D), f ∈ C4

λ (D),
and that the compatibility conditions of the previous theorem are fulfilled. Then the
reduced solution v0 exists and v0 ∈ C4

λ (D). Also, if the additional compatibility condi-
tions

∂2f(0, 0)

∂x2
=
∂2f(1, 0)

∂x2
= 0 (6)

are fulfilled, then v1 exists and v1 ∈ C4
λ (D). Moreover, assuming that the further com-

patibility conditions

∂f(0, 0)

∂t
=
∂f(1, 0)

∂t
= 0 (7)

are satisfied, it follows that wε exists and wε ∈ C4
λ (D). Also, for all non-negative

integers i, j, such that 0 ≤ i+ 2j ≤ 4∥∥∥∥ ∂i+jvε∂xi∂tj

∥∥∥∥
D

≤ C(1 + ε1−i/2),

and for all (x, t) ∈ D, ∣∣∣∣∂i+jwl(x, t)∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−x/√ε
and ∣∣∣∣∂i+jwr(x, t)∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−(1−x)/
√
ε,

where C is a constant independent of ε.

Proof. See [1, chap. 4] for the existence and regularity results. The bounds on the
functions and their derivatives are proved as follows.

The reduced solution v0 is the solution of a first order differential equation and
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a classical argument leads to the estimate∥∥∥∥ ∂i+jv0

∂xi∂tj

∥∥∥∥
D

≤ C. (8)

Furthermore, the function v1 is the solution of a problem of a form to which
Theorem 3 applies. It follows that∥∥∥∥ ∂i+jv1

∂xi∂tj

∥∥∥∥
D

≤ Cε−i/2. (9)

Since

∂i+jvε

∂xi∂tj
=
∂i+jv0

∂xi∂tj
+ ε

∂i+jv1

∂xi∂tj
,

the required estimates of the smooth component vε and its derivatives follow by
using (8) and (9).

The required bounds on wl and wr and their derivatives are obtained analogously.
The proof is therefore only given for wl and its derivatives. To bound wl , define

ψ±(x, t) = Ce−x/
√
εeαt ± wl(x, t).

Then, if C is chosen sufficiently large and α ≥ 0,

ψ±(x, 0) = Ce−x/
√
ε ≥ 0,

ψ±(0, t) = Ceαt ∓ v0 ≥ 0,

ψ±(1, t) = Ce−1/
√
εeαt ≥ 0

and

Lεψ
±(x, t) = C(b− 1 + αd)e−x/

√
εeαt ≥ 0

if α is chosen as in Theorem 1 to be α = maxD{0, (1 − b)/d}. It follows from the
maximum principle that for all (x, t) ∈ D

|wl(x, t)| ≤ Ce−x/
√
εeαt ≤ Ce−x/√ε

as required.
The bounds on the derivatives of wl are obtained as follows. First, a transfor-

mation is made from x to the stretched variable x̃ = x/
√
ε. Using the variables (x̃, t)

the parameter ε does not appear in the differential equation and so the appropriate
results in [1, §4.10] are applicable to its solution w̃l . Note that the domain of the
stretched variable x̃ is clearly (0, 1/

√
ε). The argument divides into two cases corre-

sponding to the position of x̃. For each neighbourhood Ñδ in (2, 1/
√
ε)× (0, T ] from

[1, §4.10] ∥∥∥∥∂i+j w̃l∂x̃i∂tj

∥∥∥∥
Ñδ

≤ C‖w̃l‖Ñ2δ
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and the required bound follows by transforming back to the variable x and using
the bound just obtained on wl .

Likewise, for each neighbourhood Ñδ in (0, 2]× (0, T ] from [1, §4.10].∥∥∥∥∂i+j w̃l∂x̃i∂tj

∥∥∥∥
Ñδ

≤ C(1 + ‖w̃l‖Ñ2δ
)

and the required bound follows by again transforming back to the variable x, using
the bound on wl and noting that for x̃ ≤ 2, e−x/

√
ε ≥ e−2 = C . This completes the

proof.

4. Formulation of the numerical method

Problem (Pε) is now discretised using a fitted numerical method composed of
a standard finite difference operator on a fitted piecewise uniform mesh. The finite
difference operator has a centered difference quotient in space and a backward
difference quotient in time. The fitted piecewise uniform mesh is constructed by
dividing Ω into three subintervals

Ω = Ωl ∪ Ωc ∪ Ωr,

where Ωl = (0, σ), Ωc = (σ, 1− σ), Ωr = (1− σ, 1), and the fitting factor σ is chosen
to be

σ = min

{
1

4
, 2
√
ε lnNx

}
, (10)

where Nx denotes the number of mesh elements used in the x-direction. The multi-
index notation N = (Nx,Nt) is also used, where Nt is the number of mesh elements
in the t-direction.

A piecewise uniform mesh ΩNx
σ on Ω with Nx mesh elements, Nx ≥ 4, is obtained

by putting a uniform mesh with Nx/4 mesh elements on both Ωl and Ωr and one
with Nx/2 mesh elements on Ωc. A uniform mesh ΩNt with Nt mesh elements is
used on (0, T ). The fitted piecewise uniform mesh DNσ on D is then defined to be the
tensor product

DNσ = ΩNx
σ × ΩNt

and its boundary points ΓN
σ are ΓN

σ = D
N

σ ∩ Γ . We put ΓN
l,σ = ΓN

σ ∩ Γl and

ΓN
r,σ = ΓN

σ ∩ Γr . Note that whenever σ = 1/4 the mesh is uniform and on the other
hand when σ = 2

√
ε lnNx the mesh is condensing on the edges Γl and Γr .

The resulting fitted mesh finite difference method for (Pε) is then

(PN
ε )

{
Find a mesh function Uε such that, on ΓN

σ , Uε = 0
and, on DNσ , −εδ2

xUε + bUε + dD−t Uε = f.

The finite difference operator LNε in (PN
ε ) is

LNε = −εδ2
x + bI + dD−t ,
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where, for any mesh function Vi,j ,

δ2
xVi,j =

(D+
x − D−x )Vi,j

(xi+1 − xi−1)/2

with

D+
x Vi,j =

Vi+1,j − Vi,j
xi+1 − xi , D−x Vi,j =

Vi,j − Vi−1,j

xi − xi−1

and an analogous definition of D−t . It satisfies the following well known discrete

minimum principle on D
N

σ .

Discrete Minimum Principle. Assume that the mesh function Ψ satisfies Ψ ≥ 0 on

ΓN
σ . Then LNε Ψ ≥ 0 on DNσ implies that Ψ ≥ 0 at each point of D

N

σ .

An immediate consequence of the discrete minimum principle is the following
ε-uniform stability property of the operator LNε .

Lemma 5. If Z is any mesh function such that Z = 0 at each point of ΓN
σ , then on

D
N

σ

|Z | ≤ (1 + αT ) max
DNσ

|LNε Z |.

5. Convergence of the numerical solutions

The main result of this paper is contained in the following theorem.

Theorem 6. Assume that b, d, f ∈ C2
λ (D) and that all of the compatibility conditions

of the previous theorem hold. Then the fitted mesh finite difference method (PN
ε ) with

the standard finite difference operator LNε and the fitted piecewise uniform mesh DNσ ,
condensing on the edges Γl and Γr , is ε-uniform for the problem (Pε) provided that the
fitting factor σ is chosen according to the formula (10) above. Moreover, the solution
uε of (Pε) and the solutions Uε of (PN

ε ) satisfy the following ε-uniform error estimate
for all Nx ≥ 4:

sup
0<ε≤1

‖Uε − uε‖DNσ ≤ C((N−1
x lnNx)

2 +N−1
t ),

where C is a constant independent of Nx,Nt and ε.

Proof. The solution Uε of (PN
ε ) is decomposed into smooth and singular com-

ponents in an analogous manner to the decomposition of the solution uε of (Pε).
Thus

Uε = Vε +Wε,

where Vε is the solution of the inhomogeneous problem

LNε Vε = f in DNσ , Vε = vε on ΓN
σ
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and therefore Wε must satisfy

LNε Wε = 0 in DNσ , Wε = −vε on ΓN
σ .

The error can then be written in the form

Uε − uε = (Vε − vε) + (Wε − wε),
and so the smooth and singular components of the error can be estimated separately.

The smooth component of the error is estimated as follows by a classical
argument. From the differential and difference equations it is easy to see that

LNε (Vε − vε) = f − LNε vε = (Lε − LNε )vε,

and so

LNε (Vε − vε) = −ε
(
∂2

∂x2
− δ2

x

)
vε + d

(
∂

∂t
− D−t

)
vε.

It follows from classical estimates (see, for example [2, p. 21] ) that, at each point
(xi, tj) in DNσ ,

|LNε (Vε − vε)(xi, tj)| ≤



ε

3
(xi+1 − xi−1)‖∂

3vε

∂x3
‖+

d(xi, tj)

2
(tj − tj−1)‖∂

2vε

∂t2
‖

if xi = σ or xi = 1− σ
ε

12
(xi − xi−1)2‖∂

4vε

∂x4
‖+

d(xi, tj)

2
(tj − tj−1)‖∂

2vε

∂t2
‖

otherwise.

Using the estimates of the derivatives of vε in Theorem 4 then gives

|LNε (Vε − vε)(xi, tj)| ≤


C[
√
ε(xi+1 − xi−1) + (tj − tj−1)]

if xi = σ or xi = 1− σ
C[(xi − xi−1)2 + (tj − tj−1)]

otherwise.

Since xi − xi−1 ≤ 2N−1
x , xi+1 − xi−1 ≤ 4N−1

x and tj − tj−1 ≤ N−1
t , this leads to

|LNε (Vε − vε)(xi, tj)| ≤


C(
√
εN−1

x +N−1
t )]

if xi = σ or xi = 1− σ
C(N−2

x +N−1
t )

otherwise.

Now introduce the function

ϕ(xi, tj) = C[
σ√
ε
N−2
x θ(xi) + (1 + tj)N

−2
x + tjN

−1
t ],
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where θ is the piecewise linear polynomial

θ(x) =


x

σ
for 0 ≤ x ≤ σ,

1 for σ ≤ x ≤ 1− σ,
1− x
σ

for 1− σ ≤ x ≤ 1.

Then, for all (xi, tj) ∈ DNσ ,

0 ≤ ϕ(xi, tj) ≤ C(N−2
x lnNx +N−1

t )

and also

LNε ϕ(xi, tj) ≥
{
C(
√
εN−1

x +N−2
x +N−1

t ) if xi = σ or xi = 1− σ
C(N−2

x +N−1
t ) otherwise,

where the observations that σ/
√
ε ≤ 2 lnN and

LNε θ(xi) =


εNx

σ
+ b(xi) if xi = σ or xi = 1− σ

b(xi)θ(xi) otherwise

have been used. Introducing the two functions

ψ±(xi, tj) = ϕ(xi, tj)± (Vε − vε)(xi, tj)
it follows that at each point (xi, tj) ∈ DNσ

LNε ψ
±(xi, tj) ≥ 0

and at each point (xi, tj) ∈ ΓN
σ

ψ±(xi, tj) = ϕ(xi, tj) ≥ 0.

Thus, from the discrete minimum principle

ψ±(xi, tj) ≥ 0 for all (xi, tj) ∈ DNσ ,
and so for all (xi, tj) ∈ DNσ

|(Vε − vε)(xi, tj)| ≤ ϕ(xi, tj) ≤ C(N−2
x lnNx +N−1

t ),

that is

|Vε − vε| ≤ C(N−2
x lnNx +N−1

t ). (11)

To estimate the singular component of the error, in an analogous way to that
for wε, the singular component Wε is written in the form

Wε = Wl +Wr,
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where Wl and Wr are defined by

LNε Wl = 0 in DNσ , Wl = −v0 on ΓN
l,σ, Wl = 0 on ΓN

b,σ ∪ ΓN
r,σ

and

LNε Wr = 0 in DNσ , Wr = −v0 on ΓN
r,σ, Wr = 0 on ΓN

l,σ ∪ ΓN
b,σ.

The error can then be written in the form

Wε − wε = (Wl − wl) + (Wr − wr),
and the errors Wl−wl and Wr−wr , associated respectively with the boundary layers
on Γl and Γr , can be estimated separately.

Consider the error Wl − wl . From the differential and difference equations it is
easy to see that

LNε (Wl − wl) = (Lε − LNε )wl = −ε
(
∂2

∂x2
− δ2

x

)
wl + d

(
∂

∂t
− D−t

)
wl. (12)

A classical estimate gives

|
(
∂

∂t
− D−t

)
wl(xi, tj)| ≤ 1

2
(tj − tj−1)

∥∥∥∥∂2wl

∂t2

∥∥∥∥ . (13)

Using the fact that the t-mesh is uniform with tj − tj−1 = N−1
t and the bounds on

the t-derivatives of wl in Theorem 4, it follows that on DNσ the second term on the
right of (12) satisfies

|d
(
∂

∂t
− D−t

)
wl | ≤ CN−1

t . (14)

To bound the first term on the right of (12) note that from (10) there are just two
possibilities. Either σ = 1/4 or σ = 2

√
ε lnNx. In the first case the mesh is uniform

and so xi − xi−1 = N−1
x . Also 1/4 ≤ 2

√
ε lnNx and so ε−1 ≤ 64(lnN)2. Combining

these with a classical estimate and Theorem 4 yields the bound for all (xi, tj) ∈ DNσ

|ε
(
∂2

∂x2
− δ2

x

)
wl(xi, tj)| ≤ C(N−1

x lnNx)
2. (15)

In the second case the mesh is piecewise uniform and σ = 2
√
ε lnNx. The argument

now depends on the position of the mesh point xi in Ω and there are three distinct
possibilities.

The first is xi ∈ (0, σ). Then xi−xi−1 = 4σ
Nx

= 8
√
εN−1

x lnNx. Combining this with
a classical estimate and Theorem 4 leads to the bound (15).

The second is xi ∈ (σ, 1). Then xi−1 ≥ σ and so e−xi−1/
√
ε ≤ e−σ/

√
ε = e−2 lnNx =

N−2
x . Combining this with a classical estimate and Theorem 4 gives the bound for
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all (xi, tj) ∈ DNσ

|ε
(
∂2

∂x2
− δ2

x

)
wl(xi, tj)| ≤ CN−2

x . (16)

The third is xi = σ. Then xi−1 = σ − 4σ/Nx and so

e−xi−1/
√
ε = e−σ/

√
ε . e4σN−1

x /
√
ε

= e−2 lnNx . e8N−1
x lnNx

= N−2
x (N1/Nx

x )8

≤ CN−2
x ,

since supM≥1 M
1/M < ∞. Combining this result with a classical estimate and

Theorem 4 again leads to the bound (16), which is a slightly stronger result than
(15).

In all cases therefore the first term on the right of (12) satisfies (15). Combining
(14) and (15) with (12) yields the estimate for all (xi, tj) ∈ DNσ

|LNε (Wl − wl)(xi, tj)| ≤ C((N−1
x lnNx)

2 +N−1
t ).

Using Lemma 5 then gives for all (xi, tj) ∈ DNσ
|(Wl − wl)(xi, tj)| ≤ C((N−1

x lnNx)
2 +N−1

t ). (17)

A completely analogous argument leads to the estimate for the error corresponding
to the boundary layer for all (xi, tj) ∈ Γr

|(Wr − wr)(xi, tj)| ≤ C((N−1
x lnNx)

2 +N−1
t ). (18)

Combining (11), (17) and (18) completes the proof.

Let Uε denote the piecewise bilinear interpolant of the solution Uε of (PN
ε ) from

the mesh DNσ to the domain D. The following theorem, which is easily established by
arguments given in [2], shows that this interpolant is also ε-uniform at each point
of D.

Theorem 7. Assume that the hypotheses of the previous theorem hold and that Uε is
a piecewise bilinear interpolant of the solution Uε of (PN

ε ). Let uε denote the solution
of (Pε). Then, for all Nx ≥ 4, the following ε-uniform error estimate holds:

sup
0<ε≤1

‖Uε − uε‖D ≤ C((N−1
x lnNx)

2 +N−1
t ),

where C is a constant independent of Nx,Nt and ε.
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Note that if, in the above theorem, the piecewise constant interpolant Uε of the
exact solution uε had been used then the weaker ε-uniform error estimate

sup
0<ε≤1

‖Uε − uε‖D ≤ C(N−1
x lnNx +N−1

t )

would have been determined.
In [4], the author deals with a generalisation of the problem (Pε) to n space

dimensions. Using the obvious generalisation of the piecewise-uniform mesh given
in this paper and assuming sufficient compatibility and sufficient smoothness, so
that only parabolic boundary layers occur in the solution, it is shown that

sup
0<ε≤1

‖Uε − uε‖DN ≤ C[(N−1
x lnNx)

2 +N−1
t ],

where C is independent of N and ε.

6. Numerical results

Numerical results are presented in this section for the problem with the data
T = 1, b(x, t) ≡ 0, d(x, t) ≡ 1, f(x, t) ≡ 0, ϕ(x, 0) ≡ 0, ϕ(0, t) = t and ϕ(1, t) =

(t+ 1/2ε)erfc ( 1
2
√
εt

)−
√

t
πε
e−1/4εt. The exact solution of this problem is

uε(x, t) = (t+
x2

2ε
)erfc(

x

2
√
εt

)−
√

t

πε
xe−x2/4εt.

It is clear that there is a parabolic boundary layer in a neighbourhood of Γl , but
because of the boundary values there is no boundary layer on Γr .

It is easy to verify that not all of the compatibility hypotheses of Theorem 6
are fulfilled by the data of this problem. This means that this problem does not
belong to the restricted class of problems covered by Theorem 6. Nevertheless, it
is seen below that the numerical behaviour of the appropriate fitted-mesh finite
difference method is ε-uniform and it follows that in practice the numerical method
is ε-uniform for a wider class of problems than is covered by Theorem 6.

In what follows the problem is solved using numerical methods (PN
ε ) comprising

standard finite difference operators (centred in space, implicit in time) on either
uniform meshes with Nx ×Nt elements or fitted meshes with Nx ×Nt elements. The
fitted meshes used in these computations are of the form described in §4, and so they
condense on both Γl and Γr . But because there is no boundary layer on Γr , there is
no need for the mesh to condense on Γr . This means that equally good numerical
results could have been obtained for this problem using a mesh condensing on Γl
alone and therefore requiring fewer mesh points. The reasons for not removing the
mesh condensation on Γr was because the available code was written for the more
general case and the optimal mesh was not investigated. In the remainder of this
section it is assumed that Nx = Nt = N.

The errors E(ε, N) in the numerical solutions using uniform meshes with N =
4, 16, 64, 256, and 1024 and values of ε from 1 to 2−24 are presented in Table 1.

The last row of the table contains the maximum error, E(N) = maxε E(ε, N),
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Table 1—Table of errors E(ε, N) using classical uniform meshes.

ε \ N 4 16 64 256 1024

1.0 1.630e-02 6.144e-03 1.780e-03 4.651e-04 1.176e-04

2−4 4.374e-02 8.624e-03 1.960e-03 4.769e-04 1.184e-04

2−8 3.601e-02 2.558e-02 3.131e-03 5.507e-04 2.484e-04

2−12 2.432e-03 3.095e-02 2.061e-02 1.728e-03 2.444e-04

2−16 1.526e-04 2.069e-03 2.966e-02 1.934e-02 1.376e-03

2−20 9.537e-06 1.297e-04 1.978e-03 2.934e-02 1.902e-02

2−24 5.960e-07 8.106e-06 1.240e-04 1.956e-03 2.926e-02

E(N) 4.374e-02 3.095e-02 2.966e-02 2.934e-02 2.926e-02

Table 2—Table of errors E(ε, N) using fitted piecewise uniform meshes.

ε \ N 4 16 64 256 1024

1 1.630e-02 6.144e-03 1.780e-03 4.651e-04 1.176e-04

2−4 4.374e-02 8.624e-03 1.960e-03 4.769e-04 1.184e-04

2−8 3.976e-02 2.558e-02 3.131e-03 5.507e-04 2.484e-04

2−12 4.494e-04 4.156e-02 7.214e-03 1.077e-03 2.478e-04

2−16 9.440e-03 4.156e-02 7.214e-03 1.077e-03 2.478e-04

2−20 1.207e-02 4.156e-02 7.214e-03 1.077e-03 2.478e-04

2−24 1.273e-02 4.156e-02 7.214e-03 1.077e-03 2.478e-04

E(N) 4.374e-02 4.156e-02 7.214e-03 1.077e-03 2.478e-04

occurring in the rows above it. Since these maxima occur along a diagonal of the
table, and do not decrease significantly as N increases, it is clear that there is a
persistent maximum error of about 3% no matter how large N is. This shows
numerically that this numerical method is not ε-uniform. Another feature of this
behaviour is that when a value of ε is chosen that is below the diagonal, then the
error grows with increasing N until the diagonal is reached. This behaviour is not
in accord with the properties expected of a satisfactory numerical method.

On the other hand the analogous results on the appropriate fitted meshes are
presented in Table 2.

In this table, for all N ≥ 16, the maxima of the columns occur in the row
corresponding to ε = 2−12 and these maxima decrease rapidly as N increases. This
behaviour is in complete agreement with the theoretical result in Theorem 6. Note
that with this ε-uniform method, when N = 64, the maximum error in that column
is less than 1%, which cannot be achieved for any value of N using a uniform
mesh.

Finally, while Theorem 6 reveals nothing about the convergence of the computed
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Table 3—Table of errors Q(ε, N) using classical uniform meshes.

ε \ N 4 16 64 256 1024

1 1.279e-01 3.269e-02 8.217e-03 2.057e-03 4.496e-03

2−4 4.516e-01 1.293e-01 3.317e-02 8.346e-03 5.904e-03

2−8 8.876e-01 4.332e-01 1.228e-01 3.152e-02 1.086e-02

2−12 1.066e+00 8.863e-01 4.282e-01 1.211e-01 3.111e-02

2−16 1.113e+00 1.066e+00 8.860e-01 4.270e-01 1.207e-01

2−20 1.124e+00 1.113e+00 1.066e+00 8.859e-01 4.267e-01

2−24 1.127e+00 1.124e+00 1.113e+00 1.066e+00 8.856e-01

Q(N) 1.127e+00 1.124e+00 1.113e+00 1.066e+00 8.859e-01

Table 4—Table of errors Q(ε, N) using fitted piecewise uniform meshes.

ε \ N 4 16 64 256 1024

1 1.279e-01 3.269e-02 8.217e-03 2.057e-03 4.496e-03

2−4 4.516e-01 1.293e-01 3.317e-02 8.346e-03 5.904e-03

2−8 7.867e-01 4.332e-01 1.228e-01 3.152e-02 1.086e-02

2−12 7.727e-01 5.505e-01 2.428e-01 8.507e-02 2.701e-02

2−16 7.690e-01 5.505e-01 2.428e-01 8.507e-02 2.701e-02

2−20 7.680e-01 5.505e-01 2.428e-01 8.507e-02 2.701e-02

2−24 7.678e-01 5.505e-01 2.428e-01 8.507e-02 2.701e-02

Q(N) 7.867e-01 5.505e-01 2.428e-01 8.507e-02 2.701e-02

normalised flux to its exact value

Pε(x, t) =
√
ε
∂uε(x, t)

∂x
,

the following two tables show experimentally that, if the computed normalised flux
is defined by

PN
ε (x, t) =

√
εD+

x Uε(x, t),

then its values, for example on the boundary, converge ε-uniformly in the maximum
norm to the correct values using fitted meshes, while the convergence is not ε-uniform
using uniform meshes. In Tables 3 and 4

Q(ε, N) = max
0≤t≤T |Pε(0, t)− P

N
ε (0, t)|

and

Q(N) = max
ε
Q(ε, N).
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7. Conclusions

A singularly perturbed Dirichlet boundary value problem for a linear parabolic
differential equation having parabolic boundary layers was formulated. A fitted mesh
finite difference method was constructed and was proved to be an ε-uniform method
for this problem. Numerical results were presented, which numerically validate this
theoretical result and show that a method using the same finite difference operator
on a uniform mesh is not an ε-uniform method.
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